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ABSTRACT ;:’é/SZ\EZ ;7

This report presents the results of a research effort concerned with the
development of a general digital computer program capable of solving sets of
nonlinear algebraic equations which are characteristic of filter circuit analysis.
The program utilizes a combination of the Newton-Raphson method and the
Freudenstein-Roth technique. Results of computer runs involving six equations

and unknowns and thirteen equations and unknowns are presented.

The report indicates that the computer program developed is capable of
solving sets of nonlinear algebraic equations, and the ease with which the

solution is achieved is directly related to the accuracy of the initial estimates

of the roots to the equations. ./(j[&jji}éi}’L .
S
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Symbol

Al
i

aln

azn

LIST OF SYMBOILS

A. English Letters
Definition

the coefficient of the first term of the jth equation which is
systematically reduced to unity

the mth value of the coefficient of the jth equation

the superscript for Yn corresponding to the minimum value of

(m)

(m,n) - Fj] for the first variation of Yn

g l
¥,
jél J

the superscript for Yn corresponding to the minimum value of

P
I¢'(m,n) - F,] for the second variation of Y (m)
j j "

!
th . .
the m capacitance expressed in farads
th . . . . . .
q coefficient in series in denominator of transfer function
.th
the degree of the j  equation
] .th .
the constant in the j  equation
th . .th
the m value of the constant in the j  equation
number of terms in the numerator of the transfer function
number of terms in the denominator of the transfer function

th

t .
a constant relating the m h natural resistance with the m = inductance

the m®® jnductance expressed in henries
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Symbol Definition
th . ; .
Nq q coefficient in series in numerator of transfer function
P the number of equations or unknowns
. .th .
Qj the number of terms in the j  equation
Q, the number of terms in the longest equation
j(max)
Qlimit the number of times the columns of terms in the set of equations
are rearranged
th . .
Rm the m~ resistance expressed in ohms
(b) ) th —
Rm natural resistance for the m  inductance (w=1,2,...v) expressed
in ohms
g(s) . . th i _
' surplus resistance in the m resistance Rm (m=1,2..,v) expressed
in ohms
s s th . .th .th
r(j,i,k) the subscript for the k factor in the i~ term of the j = equation
s Laplace transform variable
T transfer function
. .th .
tji the ith term in the Jt equation
Ulimit maximum number of steps to be used in the Newton-Raphson method
u number of resistances in the circuit
\' the selected number of iterative steps in the Freudenstein-Roth

technique

vii
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Symbol

Vlimit
v

W

Yn(low)

Yﬂ(Up)

Definition -

maximum number of steps in the Freudenstein-Roth technique
number of inductances in the circuit

number of steps selected for use with the process of selection

of initial estimates
number of capacitances in the circuit

the ntb unknown defined by Eq. (2-14)

mth estimate of Xn

the position vector representing the point (X

(m) x§m> vee X

(m)
1 P }
, (v) ,
unknown corresponding to Rm (m=1,2,...Vv)

unknown corresponding to R(s) (m=1,2,...V)

m
circuit elements (resistances, inductances, and reciprocals of

capacitances) or unknown magnitude

[-Y;l(low) : Yn(up)]%

final value of Yn resulting from the process of selection of

initial estimates

mth value of Yn obtained during the process of selecting initial

estimates or other iterative process
lower limit of the range of interest for Yn

upper limit of the range of interest for Yn

viii
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B. Greek lLetters

Symbol Definition
Aa an integer usually taken as unity which represents convergence

criteria in the process of selection of initial estimates

AX(m) (X(m+1) _ X(m))

n n n
egm) the mth value of the jth residual
A a variable whose magnitude must satisfy Eq. (2-28)
T the function defined by Eq. (2-22)
vVt the gradient of the function T

(m) (m) _(m) (m)
¢j ¢>J.(x1 » Xo 7 eas ” )

.th

Wj the j  function of the form of Eq. (2-3)
w§m,n) the value of wj obtained in the mth step of the variation of Yﬁm)

in the process of selection of initial estimates
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SUMMARY

A research effort has been carried out to develop a general digital computer
program which is capable of simultaneously solving sets of nonlinear algebraic
equations which arise in problems involving filter circuit analysis. A number
of different numerical techniques were considered. A combination of the Newton-
Raphson method and the Freudenstein-Roth technique was found to be the most
promising approach. To increase the latitude in the selection of initial
estimates of the roots to the equations, a special iterative selection process
was developed to be used in conjunction with the combined Newton-Raphson

Freudenstein-Roth technique.

The numerical methods were incorporated into a digital computer program
=
which was tested on sets of equations consisting of six equationsand thirteen
equations. The program successfully solved each set for two sets of roots
which appeared to "cluster" together to some extent. For the larger set of
equations, some difficulty was encountered in achieving convergence when the

initial estimates were more than one order of magnitude from the actual roots.

The conclusion was reached that the program, with the combined numerical
methods already mentioned, is suitable for solution of sets of nonlinear
algebraic equations. Although the program is specifically designed to
handle equations characteristic of filter circuit analysis, it was noted that
only minor modifications would be necessary to permit application of the program
to any set of nonlinear algebraic equations. The possibility of certain

numerical refinements to the program appeared likely. Also, consideration of
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the actual availability of electronic components corresponding to the roots
obtained seemed worthy of study. The recommendation was made that the research

effort be continued to investigate such items.

xi
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1.0 INTRODUCTION

In filter circuit analysis, problems arise which involve the simultaneous
solution of sets of nonlinear algebraic equations. Solution of such Sets by
hand can be extremely difficult, and if a large number of equations are involved,
hand calculations become impractical. The use of digital computers, coupled
with appropriate numerical techniques, is a logical approach to such problems.

In developing the necessary digital computer program, consideration must be
given to the fact that there are many different filter circuits, and the set
of equations corresponding to any one circuit will generally be different from
all other sets. Thus the most desirable program is the most general, capable

of solving a number of different sets of equations.

The Huntsville Department of Northrop Space Laboratories, under Contract
NAS8-20183 for the Aero-Astrodynamics Laboratory of Marshall Space Flight
Center, has been engaged in the development of a general digital computer program
capable of solving sets of nonlinear algebraic equations. Mr. Mario Rheinfurth
of—the Control Theory Branch, Dynamics and Flight Mechanics Division, has acted
as the NASA Technical Representative for this research effort. Section 2.0
of this report provides a detailed description of the problem involved, applicable
numerical schemes, and digital computer considerations. A discussion of the
computer program is presented in Section 3.0. Section 4.0 describes the results

obtained. Conclusions and recommendations are presented in Section 5.0.
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2.0 TECHNICAL DISCUSSION

2.1 Statement of the Problem

Transfer functions associated with electronic filter circuits, such as that

shown in Figure 2-1, have the general form

G H
= ) n .9 7 p 01 (2-1)
q=1 a-1 q=1 a-1
where
T = transfer function
G = number of terms in numerator
Nq = qth coefficient in series in numerator
s = Laplace transform variable
H = number of terms in denominator
Dq = qth coefficient in series in denominator.

Generally, the numerical values of the coefficients, Nq and Dq’ are obtained‘by
cﬁrve fitting. Based on circuit analysis of a given filter circuit, a set»of

equations can be derived. The derivation can be accomplished by means of a flow
graph (ref. 1), which makes use of Kirchhoff's Law, or by use of topology (ref. 2).

The resulting set of equations may be written as

wj(Yl,Yz,ooanoaoYp) = Fj (j=1,2,conp) (2-2)

where

p =G +H



R, L, c,
Ry
ej>
L
T
Figure 2-1. TYPICAL EIECTRONIC FILTER CIRCUIT
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Nj_1 (j=1,2,...G)
3T D (3=G+1 G+H)
jg-1 G oo
Yn = circuit elements (resistances, inductances, and reciprocals of

capacitances) of unknown magnitude.

Thus for each coefficient Nq or Dq there is an equation in which the coefficient
appears as a constant, Fj' It should be noted that although the magnitudes of
the Yﬁ are unknown, their identities as resistances, inductances, or reciprocals
of capacitances are established by the filter circuit analysis. The reciprocal

of capacitance is used because the resulting form of wj is easier to work with.

In Eq. (2~2) the functions wj consist of a sum of terms of the form

<
s = V 1= -
where the term tji has the form
' % (2-4)
t.o = ) - Y . . - .= e @ .= L3N X -
i T Te(5,1,10 (57L,2,-.00) (171,2,..Qp)
with

(3,1,1) # £(3,4,2) # oo # 2(51,00 £ oon # 105, 1,4,

Notice should be taken that for each unknown in each term the value of r(j,i,k)
is known. Furthermore, for any value of j, all terms are of the same degree,

dj' All of the functions, wj, however, are not necessarily of the same degree.
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In order to establish an orderly relationship between Yn and the resistances,

capacitances, and conductances, it is convenient to use the following arrangement:

Y =R (n=1,2,...u)

n
Y =L, (=utle.utv) (2-5)
Yn = I/Cn+l-u-v (n=utv+l,...utviw)
where

Rn = the nth resistance

Ih = the nth inductance

Cn = the nth capacitance

u = number of resistances in the circuit

v = number of inductances in the circuit

w = number of capacitances in the circuit.

It is important to note that, based on Eq. (2-2),
p=u+tv+tuw (2-6)

The basic objective is to determine the values of the circuit components,

Y s which, subject to certain physical constraints, satisfy Eq. (2-2) for given

values of F,. Thus, the problem involves the simultaneous solution of sets of

3

nonlinear equations with '"p" equations and "p' unknowns.

2.2 Physical Considerétions

Because the circuit elements are real positive numbers, the desired roots

must likewise fall in this category. For practical purposes there exist minimum
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and maximum values for resistances, inductances, and capacitances as indicated
in Table 2-1. Thus, the roots to be obtained must fall in the appropriate
range according to the identity of each unknown as a resistance, inductance,

or reciprocal of capacitance.

Because each inductance in a circuit also has a "built-in" or natural
resistance associated with it in series, consideration must be given to the
functional relationship between each inductance and its natural resistance.

In formulating Eq. (2-2), these natural resistances are treated as portions of
unknown resistances, but actually they are each dependent on a particular
inductance. Thus, in the circuit there exists v resistances which each contain
a natural resistance. For ease in relating these resistances to the‘appro-
priate inductances it is convenient when numbering the circuit components to
use the same numerical subscript for an inductance and the corresponding
resistance. Thus R1 contains the natural resistance for Ll’ R, the natural
resistance for Ly, etc. In general, based on the relationships provided in

Eqs. (2-5), the natural resistance for L where

LmzYu-I-m (m=1,2,...v) (2-7)
would be found in Rm where
Rm = Ym (Fl,z,ooov) (2-8)

With the numbering arrangement outlined, all resistances with subscripts equal

to or less than v are composed of two parts. One part is the natural resistance,

g () g ()
m m

for an inductance, and the second part is a "surplus'resistance,
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Table 2-1

Range of Values for Filter Circuit Components

Component Minimum Maximum
Resistances (ohms) 2.4 x 10-1 2.2 x 107
Inductances (henries) 5.0 x 1077 3.5 x 102
Capacitances (farads) 1.0 x 10.11 1.5 x 10-l
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Thus

Rm = R;b) +-R;S) (r=1,2,+0.V) (2-9)
or

Ym = Y;b) +-Y;S) (m=1,2,...V) (2-10)

The functional relationship between an inductance and its natural resistance 1is
dependent on the electrical characteristics and physical dimensions of the wire
which makes up the inductance. For practical purposes, however, a linear

relationship between inductance and natural resistance appears satisfactory.

Thus
b .
RP) =k 1 (m=1,2,...v)  (2-11)
or
) _ ., _ _
Ym - Km Yum (m—l,z,conv) (2-12)

where K= a constant (normally taken as unity).

Thus, by substitution,

Yy =y'8)

m m + Km Yu_+m (m=l,2,oo.v) (2-13)

From Eq. (2-13) it can be seen that for m=l,2,...v, YQS)

are the true
independent variables instead of Ym. To avoid unnecessary use of superscripts,
while at the same time positively identifying the true independent unknowns, a

change of variable is conveniént. Thus by definition,




NORTHROP SPACE LABORATORIES

Yis) (n=1,2...v)

X = (2-14)

Yn (n=v+1,v+2...p)

All previously mentioned physical constraints for Yn apply also to Xn. In
terms of the new variables, X > Eqs., (2-2) may be written

¢j(X1,X2,--.Xn..s XP) = Fj (j=1,2000p) (2'-15)

An examination of Eqs. (2-15) reveals that while the form of functions has

changed from wj to ¢j the problem remains essentially the same.

In addition to the relationship between inductances and resistances,
there also exists the question of incrementation. The actual roots to Eqs. (2-2)
may be of such nonintegral values that some or all of them cannot be exactly
matched by circuit components which are normally fabricated. Thus the com-
ponents of an actual filter circuit may only approximate the theoretical roots

necessary to satisfy the appropriate equations for a given transfer function.

2.3 Application of Numerical Techniques

Several techniques have been widely used for some time for simultaneous
solution of nonlinear algebraic equations. These include the Newton-Raphson
method, the Method of Steepest Descent, and relaxation. More recently, several
new approaches have been developed. One of the most promising is the

Freudenstein-Roth technique (ref. 3).
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In the research effort covered by this report, the relaxation method as
described in reference 4 was found to be relatively incompatible with digital
computer application. As a result, attention was primarily directed toward
application of the Newton-Raphson method, the Method of Steepest Descent, and

the Freudenstein-Roth technique.

2.3.1 The Newton-Raphson Method

Probably the most widely used method for solving simultaneous nonlinear
algebraic equations, as well as transcendental equations, is the Newton-Raphson
method. The method is described in various numerical analysis texts (refs. 5-8)

and thus only a brief description need be given here.

The Newton-Raphson method is a successive-approximation procedure. Based -

x¢0) (o) re

on an initial estimate of the unknowns, , the values of the ¢j a

calculated and compared with the values Fj’ The difference is referred to as

the residual, e§°2 Thus

(o) _ (o) _ -
> 3 F, (2-16)

where

(0) _4,,(0) ,(0) (o)
¢ =X, %, TR )s

or in general

Egm) _ ¢§m) - Fj (2-17)

10
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where
(m) _ (m) (m) (m)
¢j ¢(x X, "”Xp Y,
and
X(m) = mth estimate of X .
n n

Obviously, when the residuals are all simultaneously zero,the solution has been

achieved. A first-order series expansion for each of the functions ¢j

initial estimate is used to approximate the functions. Thus

3 n=1
or by Eq. (2-15)
a(0)
- (o), P 9%
Fj ¢J +Z 9X
n=l n

(1) (oﬂ
(1) (01
X n

Based on the definition of the residual as given by Eq. (2-16),

p (0)

5(0) =-7 _.l_
j ax
n—l n

or in general

where

AX
n n

11

(m) _ p(mtl) _

[k(l) _ X(o)]
n n

ax™

x(m)
n

about the

(2-18)

(2-19)

(2-20)

(2-21)
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Eq. (2-21) represents a set of algebraic equations in which the unknowns

X(m)

S The partial derivatives, 3¢§m)/aXn, which can be calculated analy-

are A
gically or by finite difference, represent known coefficients in the equation.
Because the indices j and n both vary from 1 to p, this set of equations may

be seen to be linear algebraic equations with p equations and p unknowns. By

means of such an approach as Cramer's Rule, successive elimination, or iteration,

the values of the Axﬁm)

can be established.

In actual practice, the repeated application of the process will result in
a systematic reduction of the residuals toward zero, if convergence occurs.
Normally, a solution is considered to have been obtained whemn all residuals have

been reduced to some prescribed level.

Convergence criteria for the Newton-Raphson method can‘be given by means
of a Lipschitz condition as discussed in reference 6. Unfortunately such criteria
inherently require a knowledge of the solution before providing an indication
of convergence. Thus, for practical purposes, application of the criteria is
of'little value. The most useful tool actually available in this respect is the

Jacobian matrix

[3¢,/3x ] .
"

If the determinant of this matrix is identically zero, then the set of equations
represented by Eq. (2-21) is not linearly independent, and there is no unique
solution to this set of equations. For this case the Newton-Raphson method

fails. If the determinant of the matrix for any set of estimates xﬁm) numerically

12
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approaches zero or is very small, the Newton-Raphson method tends to diverge.
In such a situation, a different set of estimates with a non-zero determinant

must be used and the process restarted.

Based on the brief discussion presented, it is obvious that an awareness of
the value of determinant of the Jacobian matrix is of importance in using the
Newton-Raphson method. The most practical method of establishing whether or not
convergence will occur, however, is the actual application of the technique.

For most cases, based on practical experience, if a solution has not been

obtained before m reaches some limiting value U ¢ {usually set at 20),

limi

convergence is not likely to occur.

2.3.2 Method of Steepest Descent

Several different versions of this method are available as discussed
in references 6 and 9. For the sake of brevity, only that method which was

actually used in the present study will be described.

In its most general applications, the method applies to the location of
the maximums or minimums of a function of several real variables. Thus, if
the method is to be employed in the problem under consideration, the set of
p equations must be represented by some function with a minimum point corresponding

to each set of roots to the equations.

The function

(¢.) (2-22)

it~ o

T(X]_ ,Xz, e 0 .XP) =

j=1

13
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can be seen to meet these requirements.
The equation
T(Xl’x2’°°°xp) = constant (2-23)

represents a surface in p-dimensional space. From vector analysis, at any
. (m) (m% . ,

point (X1 ”'Xp , the gradient of 1, Vr, 1s a vector which is normal to

the surface represented by Eq. (2-23). For this reason, the vector (-Vr1)

points in the direction of most rapid decrease of T with respect to the point

(Xgm)... ;m))a Initially, as the vector is extended from the point (Xgm)... ;m)),
it intersects surfaces with successively smaller values of t. Because t can only

(m)
1

eventually intersect a surface with a value of T which is smaller than the

have positive values for real variables, the vector -Vt (X .,.X;m>) will

value of 1 for any other surface which the vector will intersect. If the

vector is extended beyond this point of intersection, the surfaces intersected

(m)

will have successively larger values of t. If the point (X1 eo0sX

i(m)

(m)) is

. m
represented by the position vector s T can be treated as a function of i( ).

(m))]

The point of intersection of the vector [-Vi(X with the surface of

minimum value of T can thus be expressed by the position vector

gt _ g(m) o x(m)y (2-24)

where A is a variable whose magnitude is not yet known. The value of A can be

established by treating T as a function of X as follows:

1(§(m+1)) = rlim - vt (E]

- T(m+1)(,0 (2-25)

14
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(

From basic calculus, when T m_H’)(A) is at a minimum (or a maximum) with respect

to the independent variable A,

d T(m+1)(k) -

i 0] (2-26)

This differential can be expanded as follows:

d 1Ty pemtl) dX) g (wtl) dX,

aT(m+l) EEE

+ PIE Sip LS —
da axl di axz da axp d A
P aT(m+1) aT(m)
=] X T X
n=1 n n
= - [vt(i(mﬂ)) . vT(i(m))] (2;27)

Thus A must satisfy the relation

(m)) . (m) (m)

ve (X Vt[i - X )1=0 (2-28)

Equation (2-28) must be solved by some iterative scheme because it is itself
a nonlinear algebraic equation with a single unknown, A. In practice it is

convenient to approximate A in a single step,

- - - - (m)
A2 e ™y o g™ [VT(x(m)) . QHA] (2-29)

This in essence represents an application of the Newton-Raphson method to obtain

a value for .

15
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Once A is calculated, the new position vector X(m+1) is established.
The process is repeated until the value of each Axﬁm), where
(m) _ 3t ,z(m)
Axn = -} 3?; x*) (2-30)

(m)

is less than some prescribed limit. At this point the values of Xnm must be
examined to determine whether or not they represent roots to the set of
equations. In some cases the method converges to values of X which represent

a "false minimum" such that the value of T is not close to zero. For such a

case the values of X obtained do not represent roots to the equations.

!

2.3.3 Freudenstein-Roth Technique

In applying either the Neéton-Raphson method or the Method of Steepest
Descent, convergence is very likely not to occur unless the initial estimates
of the roots are in the neighborhood of the actual values. Obviously, in
many cases, the locations of such neighborhoods are unknown. The need therefore

arises for some means of improving initial estimates of the roots.

One method which shows promise is the Freudenstein-Roth technique as
described in reference 3. Because of its flexibility, many different variations
of this approach can be developed. Only the two versions actually used will'be
discussed here. For brevity the first of these will be referred to as the

"coefficient approach" and the second as the '"constant approach'.

16
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The first step in the coefficient approach involves assuming some set of

initial values, Xio), for the roots. These initial values will generally not
satisfy the original equations. They do, however, represent a set of roots to

the following set of equations:

(o) (o) ] (o) _ .

477ty +1£2 5y = Fj (i=1,2,...p) (2-31)
where

(o) _ _ #0)y, (o) -

Aj (Fj ¢j )/tj1 +1 (2-32)
and

(@ - s Y(m)

ji k=1l 'r(j,1i,k)

Eq. (2-31) represents a set of equations which differs from the set represented

by Eq. (2-15) only in that the coefficients A§°) appear with the first term, tjl'

After the values of the coefficients have been determined, a recursion

relation, to cause each Aj to approach unity, is established. This relation

(m)

can be based on several alternate methods. For a simple linear variation of Aj ,

the following relation is sufficient:

(o)
ROBRO B I

3j j tjl v

(m0,1,2...V) (2-33)

where
V = the selected number of iterative steps in the Freudenstein-Roth

technique.

However, when

17



NORTHROP SPACE LABORATORES

>> 1 (2-34)

the following logarithmic variation is more useful:

Vem
(m) ] v
A7 = (m=0,1,2...V) (2-35)
By means of either recursion relation, the values of Aj(l) may be
calculated, and a new set of equations established corresponding to Eq. (2-31).

are then used as initial estimates for the roots of the new

(1)
]

estimates will be in the neighborhood of the actual roots,

The values of Xio)

» these initial
N¢H)
n

set of equations. If A are sufficiently close to A

(o)
i

, for the new

set of equations. Thus by means of the Newton-Raphson method, the actual

Xgl), can be calculated for the set of equations containing Agl). After

3
(2) (1)

are calculated. X
j n

o The vrocess is

roots,

such calculations, by means of the recurrence formula A

(2)
n

(V)

repeated until on the Vth step, the coefficients Aj equal unity and the initial

estimates X(V'l) V)
n n

are then used as initial estimates for calculating X

are used to calculate X which represent the true roots

‘CO Eq. (2-15)0

In the constant method, the procedure is similar to that for the

coefficient method except rather than varying the coefficients, the constant terms,

o)

(o) are

F., are varied. Based on a set of initial estimates, Xi , the values Fj

J
established by the relation

F§°) = ¢§°) (3=1,2...p) (2-36)

18
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Based on the linear recursion relation

a(eV) - pl0))
plm) _ plo) "] i 2., 2
j - j V (H,l, oaaV) ( "37)
where
ng) = Fj (the true value of the constant term)
the values of F§m) are systematically changed. With each such change, a new
(m)

for the corresponding set of equations) are calculated based

on the preceding roots Xém-l)

set of roots (Xn

, and using the Newton-Raphson method. As before,

(v-1) )

in the Vth step, the value of Xn is used as the initial estimate of Xn

which represents the set of true roots to Eq. (2-15).

The relative performance of the coefficient and constant approach is not
clearly established. However, the constant method appears superior to the
coefficient method whenever the initial set of coefficients, AEO), used in the
latter method, are negative. To avoid such negative coefficients when using
the coefficient method, it is desirable to arrange the terms tji in each equation

x(o)
n

so that for a given set of initial values, , the term with the greatest

magnitude 1is tjl'

The convergence criteria for the Freudenstein-Roth method are discussed
in reference 3. Obviously, if the step size is large, reflecting a small value
of V, the Newton-Raphson method may fail. This problem can be corrected by
increasing the value of V, but a point may be reached beyond which further
increases in V are not practical. In such a case, the problem must be started

over using a new set of estimates.

19
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2.4 Selection of Initial Estimates

In the problem under consideration, the range of values, within which the
desired roots are found, is quite large as indicated by Table 2-1. ﬁnder such
conditions, if the individual roots within a set are of different orders of
magnitude, considerable difficulty may be encountered in achieving convergence
with any of the numerical methods described, Thus, the need arises for some
additional tool to provide the best possible initial estimates. One such tool
which was developed in the course of the investigation appears worthy of

discussion.

The first step in the procedure involves establishing a '"range of interest"
for each unknown. This range must equal or fall within the range of the
appropriate electrical element as provided in Table 2-1. Based on this range

of interest, recursion relations and mean value relations are established as

follows:
m-1
(m) W1
= ° =1,2,, W -
1 Yn(low) [Yn(up)/Yn(low)] (m=1,2 ) (2-38)
Y, = [y ° Y : (2-39)
n n(low) n(up)
where
Yn(low) = lower limit of the range of interest for Yn
Yn(up) = upper limit of the range of interest for Y
W = number of steps selected for use with the process.

20
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(L

1 and the values ?2, ?é...?p are used to calculate

The values of Y wj(l,l)

and to determine the sum of the absolute values of the corresponding residuals,

p

(1,1)
J_L ij FJ.I .

Yim) is then varied according to Eq. (2-38) while ?é,...?é are held constant.

The sum of the absolute values of the residuals resulting from each step are

(m)
1

compared to determine the minimum sum. The value of Y, °, corresponding to

the minimum value of

p
7o e g,
P j

is selected and its superscript designated (al1). The value Yl(all) is then

(1) (1,2)

used with Y and Y....Y to calculate ¥,
2 3 p J

(al1) and Y ...?ﬁ held constant, Y2 is varied according

1 3
to Eq. (2-38) until a minimum sum is established. The corresponding Yz(m) is

12 11 = 5 .
(al2) (a ), YB(m), Y4..,Yp to find
(alp)

and the corresponding sum of

residuals. With Y (m)

designated Y2

Y3(313) etc. After p cycles the values of Y,

and is then used along with Y1
(all)

(1)

eseY are established.

(al2)

(alp)
2 ,.oYp a

At this point the process starts over using Y1 and Y s

initial values. The value of the superscript of Y{m), corresponding to the

minimum sum of the absolute value of the residuals, is established and designated

a2l. This superscript is compared with all. 1If lall-aZl! =< pa, where Aa is some

(all)’ Yz(l)’ Y (a13).° v (a1p)

selected integer, the process continues using Y1 3 Yy

2(azz) o

as initial values to establish Y tc. The process is considered complete

if for p consecutive cycles,

aln-a2ni{ < Aa.

21
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If at any point,
Ialn-aZnI > Aa,

(a1n) (ain)

the old value of Yn is discarded and Yn (a2n).

is set equal to Yn
Following such an event the process must continue on for at least p cycles

without Aa being exceeded by |a1n-a2n|. Whenever Aa is exceeded, the counting
starts over until p consecutive cycles are achieved without an inequality. The

(g)

resulting estimates of Yn’ designated Yn , may then be used as an estimate

in conjunction with the other numerical techniques already described.

2.5 Digital Computer Considerations

The numerical procedures previously outlined are especially suited for use
with a digital computer. The most important factor to consider in developing
a computer program involving such techniques is general applicability to different
sets of equations. Thus the program should be flexible enough to solve any set
of equations of the form of Eq. (2-2) irregardless of the number of equations
or unknowns (p), the number of terms in each equation (Qj), or the number of

unknowns in each term (dj)-

To achieve the desired flexibility, the identity of each unknown in each
term of each equation must be an input. The method developed for accomplishing
this arrangement is based on the concept of assigning subscripts to the sub-
scripts as indicated by Eq. (2-4). Based on the relationship between circuit
elements and unknowns established by Eqs. (2-5), (2-7), and (2-8) a numerical
value (1,2,...n...p) can be assigned for each subscripted subscript r(j,i,k).

The values for r(j,i,k) can thus be read into the computer and stored in a

22
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systematic manner. For example the subscript r(3,4,2) refers to the second
factor (k=2) of the fourth term (i=4) in the third equation (j=3). If the

subscripted variable Yr( is called for, the computer determines the

ii,k)
value, n, which was the input for r(j,i,k). With the value of the subscript
established, the appropriate Yn which has either been input or calculated, is

used for Y . For example, if r(3,4,2) =6, then Yr(3,4,2) = Y6'

r(j’isk)

Because the subscript of a particular unknown Yn is identical to the
subscript of the corresponding Xn’ the same technique for subscripted subscripts
described for Yn’ applies also to Xn. Based on practical considerations, it
appears most convenient to establish the equations in terms of the unknown
variables Yn and then to convert the equations by a change of variables from
Yn to Xn according to Eq. (2-14) within the computer program. Thus all inputs
would refer to the variables Yn' Likewise, all outputs are most conveniently

expressed in terms of Yn'
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3.0 DIGITAL COMPUTER PROGRAM

Based on the technical considerations described in Section 2.0, a
digital computer program has been developed in both FORTRAN II and FORTRAN IV
for the simultaneous solution of sets of nonlinear algebraic equations. The
program is designed as a working tool with maximum flexibility built-in. The
subsections which follow provide a description of the various features of

the program,

3.1 Basic Features

The program is designed to solve sets of nonlinear algebraic equations
of the type indicated by Eq. (2-2). A general flow chart is provided‘in
Figure 3-1; Copies of the source program written inm FORTRAN II and IV are
included in Appendix A, A description of the subroutines included in the program
is presented in Appendix B. This program has been checked out for use on the
IBM 7094 digital computer in FORTRAN IV and for the CDC 3200, SDS 930,
and IBM 1620 computers in FORTRAN II. For the case involving more than
10 equations and 10 unknowns, the core storage of the SDS 930 will probably

be exceeded.

The program utilizes the Freudenstein-Roth technique in conjunction
with the Newton-Raphson method. For the variation of the coefficients
in the Freudenstein-Rogh technique, the logarithmic variation as
expressed by Eq. (2-35) is used. For the Newton-Raphson method all
partial derivatives are calculated by analytical differentiation as
opposed to finite difference methods. The Gaussian pivotal technique 1is

used to solve the linear algebraic equations shown in Eq. (2-21).
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SEARCH MATRIX

FOR LARGEST
VALUE

(= A(IX, JX))

A(IX,JX)> 0 NO = RETURN

(IE = 2)

YES A

PUT A(IK,JX)
IN K, K
POSITION

l

DIVIDE ROW
K BY
A(K, K)

RETURN
(IE = 1)

Figure 3-1c. SUBROUTINE SIMEQ
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RETURN X0 ~GriD Ngs + 1

CGRID = GRID + 1) +
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Figure 3-1d. SUBROUTINE FCON
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After the terms of the equations and the initial range of interest for
each unknown have been read into the computer, values for initial estimates
of each unknown are established by means of the method for selection_of
initial estimates, discussed in Section 2.4, The terms are then rearranged

so that the first term in each equation is that term with the largest

numerical value. With such an arrangement of terms, and with the initial estimates,

a solution is attempted using the coefficient method described in Section 2.3.
If such a solution is obtained, it is printed out. If this is not successful,
the value of V (the selected number of iterative steps) is doubled to reduce
the size of the incremental change in the coefficients, and a solution is again
attempted. If no solution is achieved, V is again doubled. The process
continues until a solution is found or the value of V exceeds some es£ablished

1

limit, At this point the terms are rearranged in their original order

Viimit®
(the order in which they were read into the computer) and a solution is again
attempted. If this fails, the first column of terms is replaced by the second
column and again an attempt is made to obtain a solution. The procedure is
repeated as necessary, using the coefficient approach, with the first column
of terms being successively replaced by the other columns within the set of
equations. The total number of such attempts is equal to some value, Qlimit’
which is equal to or less than the number of terms in the longest equation plus
one (Qj(max) +1). 1In those equation where Qj < Qj(max

been successively used as the first term, the term which was originally last

y? after all terms have

is used repeatedly as the first term for all additional attempts.
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If the coefficient approach does not yield a solution, the program,
through a subroutine, applies the constant approach. This approach uses
the same value of V as was initially used with the coefficient approach.
The value, Vlimit’ is also used as before. If the constant approach

fails, a new set of initial estimates must be calculated by, or read into the

computer and the entire procedure repeated.

3.2 Inputs and Options

A complete listing of all items to be input is incldded in Appendix C.
This listing includes FORTRAN symbol definitions and units corresponding
to each input item. Input items include the values of the constants,
F . 3 .
i3 the ragge of interest for each unknown, Yn(low)’ to Yn(up)’ and the

subscripts identifying the arrangement of the unknowns in each equation, r(j,i,k).

Extreme care should be taken in preparing the values of the subscripts
of the unknowns to be used as inputs. The correspondence between the
subscripts of the unknowns, Yn’ and the resistances, inductances, and
capacitances should be in accordance with Eqs. (2-5), (2-7), and (2-8).

If this correspondence is not used, or if any individual subscript is
not correctly read into the computer, the set of equations which the
computer will solve will not correspond to the actual set. Thus the

solution obtained will not satisfy the correct set of equations.

An option is provided for the manner in which the initial set of

estimates are established. If the values of Yn(up) are read in as equal

to Yn(lo

estimates without use of the method of selection of initial estimates

W)’ the computer will use the value Yn(low) as the initial
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previously described. Otherwise, the computer will-use the input values of

and Y

n(up) in conjunction with the method of selecting initial

Y
n(low)
estimates as described in Section 2.4, Notice should be taken that for
convenience the values of Yn’ where (utv)< n < p, are read in as capacitances,

and not as the reciprocals of the capacitances. The reciprocals for these Yn

are taken within the program.

Options are also provided for establishing the limiting value, Vlimit’
for the number of iterative steps in the Freudenstein-Roth technique, and
also for Ulimit which is the maximum number of steps to be used in the

Newton-Raphson method.

The ipput item, Km, governs the linear relationships between an
inductance and its associated natural resistance in accordance with Eq.
(2-11). Normally the input values of Km are all unity, which is compatible
with accepted electrical engineering practice. For those resistances which

are not associated with any inductance, the value of Km should be input as zero.

An option is established as to the number of columns of terms to be
interchanged in the manner already described in subsection 3.1l. The input
value of Qlimit establishes the number of such exchanges. There is also
an option as to what action the computer takes after it obtains a set of
satisfactory roots. Depending on the value of MR (FORTRAN symbol) the computer
may stop after finding a set of roots or may continue searching for additional

sets of roots until all limits (Ul'

hed.
imit’ Vlimit’ and Qlimit) have been reached
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3.3 Outputs

The outputs from the program are designed to provide the user not only
with the solution to the problem but also with an indication of the steps
taken in obtaining a solution. A complete description of all outputs is

contained in Appendix C which includes a sample printout,

The printout first provides a record of important input data and then
gives a running account of progress toward a solution. Included in this
account are a statement as to which Freudenstein-Roth technique (coefficient
or constant) is being applied; the column number of the terms which have been
exchanged with the first column (applicable only to the coefficient approach);
and the iterative step number versus the total number of steps in use with the
Freudenstein-Roth technique, When a solution is obtained, the computer
indicates whether or not the roots lie within the physical limits specified.
Following this statement, the roots, written in terms of resistances, inductances,
and capacitances are listed complete with units. If no roots are found, a

statement indicating this fact is printed out.
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4,0 DISCUSSION OF RESULTS

The computer program described in Section 3.0 was used to solve
several different sets of nonlinear equations of the form of Eq. (2-2).
In addition to the program in the form presented, several other versions
of the program were tested. The results obtained are described in the

subsections which follow.

4,1 Relative Performance of Numerical Methods

One version of the computer program contained a subroutine which used
the Method of Steepest Descent, as described in Section 2.3.2, to solve the
equations. This subroutine did not obtain solutions unless the initial
guesses were extremely close to the true roots. The Freudenstein-Roth
technique combined with the Newton-Raphson method consistently solved sets of
equations which the Method of Steepest Descent, with the same set of initial
estimates, could not solve. The inferior performance of the latter method
apparently resulted from a tendency toward convergence to false minima,
the coordinates of which did not represent true roots to the equations.
This undesirable tendency was possibly due to the considerable variation in the
orders of magnitude of the unknowns which caused the residual of some equations
to outweigh greatly the residuals of others. Because of the lack of success
with the Method of Steepest Descent, the subroutine employing this technique

was deleted from the program in its final form.

Because of the variation in the orders of magnitude of the unknowns,

the need arose for some method which could possibly improve on an initial
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set of estimates. Accordingly the method described in Section 2.4 was
incorporated into the program. The use of this technique proved beneficial
in some cases, but due to time limitations its true value has not yet been

established.

4.2 Application to Actual Problems

The digital computer program was used to solve sets of six equations

and thirteen equations. The equations represented filter circuits described

in ref. 10. A set of fifteen equations based on a filter circuit described in

ref. 11 was also developed, but time limitations have not permitted application

of the digital computer program to this set.

4.2.1 Six Equations

The program successfully solved a set of six equations and six

unknowns which represent the filter circuit on page B-42 of ref. 10, The

equations are included in Appendix D. Table 4-1 presents representative values

of Yn(low) and Yn(up) used and the roots obtained. In general the progrmg

experienced no difficulty handling this set of equations.

4.2.2 Thirteen Equations

Solution of a set of thirteen equations and thirteen unknowns, based
on the filter circuit shown on page B-93 of ref. 10 was also attempted
by the computer program. The equations are presented in Appendix E. Table

4-2 presents the values of Y and Y used and the resulting roots.
: n(low) n(up)
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Run #

L(6-4-F)

B(6-8-FC)

[« BT NV .

TABLE 4-1

RESULTS OF COMPUTER SOLUTION OF SIX EQUATIONS

Yn(low) Yn(up)
4,000 4,000
6,000 6,000

800 800
40 40
80 80

20,000 20,000
1,500 1,500
2,500 2,500

250 250
15 15
43 43
8,000 8,000

Yn
2535.5886
2136.2946
561.72030
28.086015
28.483928

12,601.871

1,999.9954
3,000.0089
399.99882
19,999939
40.00017
9,999.9774

35

Corresponding Electrical

Coggonents

R(1)=2.5355886 x 10
R(2)=2.1362946 x 10
R(3)=5.6172030 x 10
L(1)=2.8086015 x 10
L(2)=2.8483928 x 10" henries

C(1)=7.93532960 x 107> farads

ohms
ohms
ohms

henries

[ B N B US B UV ]

ohms
ohms
ohms

R(1)=1.9999954 x 10
R(2)=3.0000089 x 10
R(3)=3.9999882 x 10
L(1)=1.9999939 x 10
L(2)=4.,0000117 x 10 henries

C(1)=1.00000226 x 107 farads

henries

L S\ VU V)
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Run #

3200(J-12)

Is

O 00 N O~ 0N -

10 -

12

13

TABLE 4-2

RESULTS OF COMPUTER SOLUTION OF THIRTEEN EQUATIONS

Yn(low)

1.80x10
3.60x10
4.,50x10
2.70x10
4,50x10°
4.50x10
5.40x10
3.60x10
2,70x10
9.00090009x10
1.07991361x10
1.35135135x10
1.80180180x10

- o = =N W W W W

w

~ P~

Yn(ug)

1.00x10
1.00x10
1.00x10
1.00x10
1.00x10
1.00x10
1.00x10
1.00x10
1.00x10
1.00x10
1.00x10
1.00x10
1.00x10

w &~ s~

L b v DD NN

36

|

3,16134118x10
1,06913525x10
3.,25326080x10
1,12238574x10
5.00 x 102
8.60235493x10"
1.60370290x10>
2.42838392x10"
1.1238573x10"
4,2279636x10°
3,20740568x10"
2.93970045x10%

7.48257161x10°2

w W s~ w

Corresponding Electrical

Coggonent

(V)

R(1)=3.16134118 x 10
R(2)=1.06913525 x 10
R(3)=3.25326080 x 10
R(4)=1,12238574 x 10
R(5)=5.00 x 102 ohms
L(1)=8.60235493 x 10' henries
L(2)=1.60370290 x 10°

L(3)=2.42838392 x 10 henries
L(4)=1.1238573 x 10 henries
C(1)=2,36520480 x 10" “farads
C(2)=3.11778458 x 10 >farads
C(3)=3.40170713 x 10 >farads
C(4)=1.33643893 x 10" *farads

ohms
ohms
ohms

ohms

w W »

henries
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Run #

3200(J-18)

10

12
13

O 0 N O W N

TABLE 4-2 (Concluded)

RESULTS OF COMPUTER SOLUTION OF THIRTEEN EQUATIONS

Yn(low)

1.95x10
3.94x10
4,96x10
2.97x10
5.00x10
5.00x10
6.00x10
4.00x10
3.00x10
1.00x10
1.20048019x10"
1.49925037x10%
2.00x10%

SO DWW W

Y
n(up)

1.00x10
1.00x10
1.00x10
1.00x10
1.00x10
1.00x10
1.00x10
1.00x10
1.00x10
1.00x10
1.00x10
1.00x10
1.00x10

[C N NV A N CE N S SRR e T L -

37

Yn
1.99999943x10>
3,99999984x10°
5.00000081x10
3.00000012x10
5.00x10>
4,99999885x10
5.99999977x10
4.00000098x10
3.00000012x10
1.00000031x10
1.19999995x10
1,49999942x10

2.00000008x10

w

3

o N I

Corresponding Electrical

Components

R(1)=1.99999943
R(2)=3,99999984
R(3)=5.00000081

R(4)=3.00000012
2

R(5)=5.00x 10~ o

L(1)=4,99999885
L(2)=5.99999977
L(3)=4.00000098
L(4)=3.00000012
C(1)=9.99999688
C(2)=8.33333366
C(3)=6.66666922
C(4)=4.99999980

x 10
x 10
x 10
x 10
hms
x 10
x 10
x 10
10

W w W W

e e i

]

L T

107>
1077
107°
107>

ohms
ohms
ohms
ohms

henries
henries
henries
henries
farads
farads
farads

farads
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As would be expected, solution of the set of thirteen equations proved
more difficult than the set of six. In a number of rums, no solutions
were achieved. The basic problem appeared to be the failure of the Newton-

Raphson method to converge with reasonable values of V it (a value of 100

lim

was used).

4,2.3 CGClustering of Sets of Roots

It is of interest to note that in both Table 4-1 and Table 4-2
each individual root within one of the sets of roots is generally of the
same order of magnitude as the corresponding root in the other set of
roots, 1In the course of the study it was observed that whenever one .set
of roots was known, finding a second set was more easily accomplished.
There appears to be some tendency for the sets of roots to equations of
the type under investigation to "cluster" together in a particular region
in the p-dimensional space defined by the p unknowns. Thus, after one set
of solutions to a particular set of equations has’been found, the discovery

of a second set near the first appears likely.
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5.0 CONCLUSIONS AND RECOMMENDATIONS

Based on the research effort to date, the conclusion is reached that, of
the numerical methods considered, a combination of the Freudenstein-Roth
technique and the Newton-Raphson method represents the most satisfactory method
of solving sets of nonlinear algebraic equations characteristic of filter circuit
analysis. The digital computer program, which has been developed utilizing
this combination, is capable of solving such equations. This program allows
considerable leeway in selection of initial estimates of the unknowns, but as
the number of unknowns increases the amount of leeway decreases., For the type
of equations under study there is some tendency toward sets of roots clustering
together. Thus, obtaining one set of roots to a set of equations tends to

facilitate discovery of another set.

The equations which were solved by the program were, as already described,
characteristic of filter circuit analysis. The program, however, with only

minor modification appears applicable to any set on nonlinear algebraic equations.

Further numerical refinements to the present technique as described in
reference 12 appear feasibie. Also, a study of the effects of the use of
standard or readily available incrementation for all circuit components, to
approximate the numerical values of the roots to the equations, is warranted.
The recommendation is made that the research effort be continued in accordance
with reference lZ in order that the true value of the digital computer program

and the numerical procedures contained within it may be established.
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APPENDIX A

Source Program

The source program which follows is presented in two versions. The first
of these is written in Fortran II and is suitable for running on the IBM 1620,
SDS 930, and CDC 3200 digital computers. The second version is written in
Fortran IV and is designed for use with the IBM 7094 digital computer. A
description of all subroutines is presented in Appendix B, A complete
description of all inputs and outputs are provided in Appendix C. A flow

diagram of the program is presented in Figure 3-1.
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A-1

Fortran II Source Program
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SYSTEM OF N SIMULTANEOUS NONLINEAR EQUATIONS
DIMENSION IMAX(6),F(6),X(6),C(6),K(6,4,2),FXORIG(6),X1(6),DELX(6),

D FX(6),DFXx(6,6),5UM(6),PSUM(6,6),T(6),P(6,6),A(6,6),R(6),
l AORIG(6),PHI(6),PTOL(6),FL(6),FC(6),FXI(6),FXLIM(6),
M XGUES(6),LMAX(6)

100 FORMAT (//4H NA=,14/)

110 FORMAT(/16H SINGULAR MATRIX/)

120 FORMAT (2014)

130 FORMAT (2x10HINPUT DATA//21H MAXIMUM NO. OF STEPS,3X,14/16H NUMBER
1 OF STEPS,8X,14/20H TIMES THROUGH SIMEQ,4X,14/15H CONSTANT TERMS/)

140 FORMAT (/32H COMMENCING COEFFICIENT APPROACH)

150 FORMAT (/3XSHFXLIM/(6(4XF16.8)))

180 FORMAT (6H GRID=,14,3X,4HNOS=,14)

210 FORMAT (6(4XE16.8))

230 FORMAT (BE10.0)

240 FORMAT (6E12.5)

250 FORMAT ( IX3IH R(,12,2H)=,F16,8,2X4H0OHMS,5X3H L(,12,2H)=,E16.8,2X
F7HHENRIES,5X3H C(,12,2H)=,F16.8,2X6HFARADS)

260 FORMAT (3BX2HL(,12,2H)=,E16.8,2X7HHENRIES,6X2HC(,12,2H)=,E16.8,2X
F6HFARADS)

270 FORMAT (73X3H C(,12,2H)=,E16.8,2X6HFARADS)

280 FORMAT (37X3H C(,]2,2H)=,E16.8,2X7HHENRIES)

290 FORMAT (3x3K R(,12,2H)=,F16.8,2X4HOHMS,5X3H L(,12,2H)=,E16.8,2X7HH
FENRIES)

300 FORMAT (3IX3H R(,12,2H)=,E16.8,2X4H0OHMS)
310 FORMAT (3X3H R(,12,2H)=,E16.8,2X4HOHMS,41X3H C(,12,2H)=,E16.8,2X6H
FFARADS)
320 FORMAT (/10H VARIABLES/)
330 FORMAT (//72H ALL RUOTS IN THE FOLLOWING SET LIE WITHIN THE PHYSIC
1AL LIMITS SPECIFIED//)
340 FORMAT (49H USING THIS SET OF ESTIMATES, NO ROQTS WERE FOUND//)
350 FORMAT (/75H THE FOLLOWING SET OF ROOTS DO NOT LIE WITHIN THE PHYS
FICAL LIMITS SPECIFIED/)
360 FORMAT (/20H RANGE FOR VARIABLES/IX6HFXORIG/(6(4XE16.8 )))
370 FORMAT (/11H THERE ARE ,12,15H EQUATIONS AND ,12,24H UNKNOWNS,CONS
FISTING OF ,12,16H RESISTANCE(S), ,12,19H INDUCTANCE(S),AND ,12,16H
0 CAPACITANCE(S).)
380 FORMAT (B5H THE LOWER BOUNDARIES FOR THE RESISTANCES, THE INDUCTAN
FCES, AND THE CAPACITANCES ARE ,2(E16.8,2H, )/5H AND ,E16.8,1H, 48H
0 RESPECTIVELY, WHILE THEIR UPPER BOUNDARIES ARE ,2(E16.8,2H, ),4HA
RND /1xE16.8,14H RESPECTIVELY.)
READ 120, MAXNOS,NOS,KK,JMAX,NMAX, IZMAX,NR,NL,NC,NOR, MR
READ 120, (IMAX(J),d=1,JMAX)
READ 120, (LMAX(J),d=1,JMAX)
READ 240, (F(J)oJ=10JMAX)
READ 230, (PTOL(N),N=1,NMAX)
READ 230, XRMIN,XLMIN,XCMIN,XRMAX, XLMAX,XCMAX
READ 230, (FXORIG(N)'N=1INMAX)b(rXLIM(N)DN=1lNMAX)
READ 240,(C(M),M=1,NR)
READ 230, TX
DO 53 J=1, UMAX
TUMAX=IMAX(J)
LUMAX=L MAX(J)
53 READ 120, ((K(J,I,0)sL=1,LJIMAX),1=1, 1JMAX)
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NNOS=NOS

PRINT 130, MAXNOS,NOS,KK

PRINT 210, (F(J),J=1,JMAX)

PRINT 360, FXDRIG

PRINT 150, FXLIM

PRINT 370, JMAX,NMAX,NR,NL,NC

| PRINT 380, XRMIN,X_MIN,XCMIN,XRMAX,XLMAX,XCMAX
IF (FXORIG(1)-FXLIM(1)) 331,332,331

E FX)
332 PRINT 320
PRINT 210, (FX(N),N=1,NMAX)
NA=1
DO 205 M=1,NMAX
IF (M-NR) 206,206,207
207 C(M)=0,
206 NRM=NR+M
205 X(M)=FX(M)-C(M)*FX(NRM)
PRINT 1490
51 PRINT 100, NA
DO 48 1=1,NMAX
XGUES(I)=Xx(1)
48 X1(1)=xX(])
IGRID=1

KSWTCH=0
LSWTCH=0
NS=0
54 PRINT 180, (IGRID,NOS)
60 DO 3 I=1,NMAX
3 DELX(I1)=0,
c CALCULATE PARTIALS
DO 4 M=1,NMAX
IF(M-NR)S5,5,6
6 C(M)=0,.
5 NRM=NR+M
FX(M)Y=C(M)*X(NRM)+X (M)
DO 7 N=1,NMAX
DFX(M,N)=Q.
: IF(M-N)9,8,9
I 8 DFX(M,N)=1.

|

|

|

47 LL=0

I ANOS=NOS
:

|
|

Go TO 7
| 9 IF(N-(NR+M))17,10,7
| 10 DFX(M,N)=C(M)
I 7 CONTINUE
4 CONTINUE
DO 11 J=1, JMAX
SUM(J)==F (J)
' DO 12 N=1,NMAX
‘ 12 PSUM(J,N)=0.
\ [ JMAX=IMAX (J)
' DO 13 I=1,]JMAX
T(1)=1.
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14

16
15
13

17

20
19

18
22

23
21

24

25
30

32
31
33

35

61

LUMAX=(MAX(J)

DO 14 L=1, JMAX
NK=K(J,I,L)

TI)=TLI)wF X(NK)

DO 15 N=1,NMAX

P(l1,N)=0.

DO 16 L=1,LJMAX
NK=K{(J,I,0L)
POI,NY=PCI,N)+«T(I)«DFX(NK,N)/FX(NK)
CALCULATE TOTAL PARTIALS
PSUM(J,N)=PSUM(J,NY+P(],N)
SUM(J)=SUM(J)+T(])
DETERMINE LARGEST COEFFICIENT OF EACH EQUATION
IF(NA-1)17,17,18

Tx=0.

FUMAX=IMAX (J)

DO 19 1=1,1JMAX
IF(T(1Y-TX)19,19,20
TX=7(1)

NX=1

CONTINUE

GO 70 21
IFCIMAX(J)+1-NAY22,23,23
NX=[MAX(J)

GO 70 21

NX=NA-1
IF(KSWTCH-1)24,25,25
CALCULATE COEFFICIENTS
ADRIG(U)=((~SUM(JY)I/T(NX))+1.
IF(LSWTCH-1)30,29,29
GRID=IGRID

IF (AQRIG(J)) 1,125,125

ACJ,NA)=-(ABS(AORIG(J)-2.)e*(1,~GRID/ANQS))+2,
GO TO. 29

A(J,NAYZAQRIG(J)*«(1.~-GRID/ANOS)
CALCULATE TOTAL PARTIALS (CORRECTED)

DO 28 N=1,NMAX
PSUM(U,N)=PSUM(J,NY+(A(J,NA)-1.0)*P(NX,N)
PHI(J)==-(SUM(J)+(A(JsNAI~1.,0)*T(NX))
KSWTCH=0

CALL SIMEQ (PSUM,DELX,PHI,JMAX,IE)
IE=1E+1

NS=NS+1

GO TO (31,32),1E

PRINT 110

GO TN 38

DO 33 [=1,NMAX

IF (ABS(DELX(I))-PTOGL(I)*ABS(X([)))33,33,40
CONTINUE

DO 35 I=1,NMAX

XCI)Y=xX([)+DELX(I)

DO 61 I=1,NMAX

NRI=NR+1]

FXCI)=C(l)yeX(NRIY+X (1)
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36
26

40
37
55
43
44
45

38

50
211

49

52

99
76

101

77

103

ig2

105
104

107
106

NS=0

LSWTCH=0

KSWTCH=KSWTCH+1

IGRID=IGR]ID+1

IF(IGRXD-NOS-1)36.5215?

DO 26 N=1,NMAX

X1 (N)=X(N)

GO TO 54

KSWTCH=KSWTCH=+1

LSWTCH=_LSWTCH=+1

IF (NS-KK)37,43,43

DO 55 1=z1,NMAX

X(1)=X(I)«DELX(])

GO 70 60

NOS=2«(NOS+1-IGRID)

IF(NOS-MAXNOS)44,38,38

DO 45 1=1,NMAX

X(l)=x1(I)

IGR[D=1

GO TD 47

NOS=NNOS

PRINT 340

DO 50 1=1,NMAX

X(I)=XGUES(I)

NAz=NA+1

IF(NA-1-17ZMAX)51,49,49

MR=0

CALL FCON (MAXNOS,NOS,KK, JMAX,NMAX,NR, LMAX, IMAX,F,PTOL,X,K,C,XGUES
sF X, IERR)

GO 70 (112,52),1ERR

[J=0

DO 76 1=1,NR .

IF (X(I)=-XRMIN) 99,76,76

Id=1J+1 '

CONTINUE

DO 77 1=1,NR

F (X(I)~XRMAX) 77,77,101

ld=lJ+1

CONTINUE

NRP1=NR+1

NRPNL=NR+NL

DO 102 I=NRP1,NRPNL

IF (X(I)~XLMIN) 103,102,102

[J=1J+1

CONTINUE

DO 104 1=NRP1,NRPNL

IF{XCI)Y-XLMAX) 104,104,105

ld=1J+1

CONTINUE

DO 106 [=NCC,NMAX

Xl =1./X(1)

IF (X(I)=XCMIN) 107,106,106

1J=1Jd+1

CONTINUE
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" 109

108
111
112
121

113
81

82

83

65
84

85

87

88

89

DO 108 [=NCC,NMAX

IF (X(I)~-XCMAX) 108,10R,109

[d=1J+1

CONTINUE

PRINT 330

GO TO 113

PRINT 340

GO T0 &7

PRINT 350

DO 81 1=1,NR

R(IY=FX(I)

DO 82 JU=NRP1,NRPNL

I=J=-NR

FLCIY=FX(J)

NCC=NR+NL +1

DO 83 M=NCC,NMAX

I=M-(NR+NL)

FXI(l)=1,/FX(M)

FCCIYy=FXI(])

I+ (NR=-NL) 91,72,65

[F (NC-NR) B85,74.,84

MIN=NL

NMIN=NR

MAX=NC

MIN1=MIN+1

NMIN1I=NMIN+1

PRINT 250, ¢1,RCIVY,I,FLCI),1,FCC(I),1=1,MIN)
PRINT 310, (Il,RC(I),I,FC(I),I=MIN1,NMIN)
PRINT 270, (I,FCCI),I=NMINYL,MAX)

GO T0 67

MAX=NR

IF (NC-NL) 88,89,87

MIN=NL

NMIN=NC

MINLI=MIN+]

NMIN1=NMIN+1

PRINT 250, (¢1,R(1),1,FL(I),1,FCCI),I=1,MIN)
PRINT 310, (I,R(I),1,FCC(I),I=MIN1,NMIN)
PRINT 300, (!,R{I1),I=NMINL,MAX)

GO 7O 67

MIN=NC

NMIN=NL

MIN1=MIN+1

NMIN1=NMIN+1

PRINT 250, (I,R(I),1,FLCI),I,FC(D),1=1,MIN)
PRINT 290, (I,R(I),I,FL(I),I=MINL,NMIN)
PRINT 300, (I,R(I),I=NMIN1,MAX)

GO TO 67

NMIN=NC

MIN=NC

NMINLI=NMIN+1

PRINT 250, (I,R(I),1,FL(I),IL,FCCD),1=21,MIN)
PRINT 300, (I,R(]),I=NMINT,MAX)
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91
92

93

95

94

96

97

72
73

GO TO 67

MIN=NL

NMIN=NC

MINiI=MIN+1

PRINT 250, (1,R(I),1.FLCI),I,FCCI), 121, MIN)
PRINT 310, (I,R(I),I.FC(1),I=MIN1,NMIN)

GO TO 67

IF (NL‘NC) 96»97;92

MAX=NL

If (NR-NC) 95,94,93

MIN=NC

NMIN=NR

MIN1I=MIN+1

NMINI=NMIN+]

PRINT 250, (I,R(I),I,FL(D),I,FC(L),1=1,MIN)
PRINT 290, (I,R(I),I1.FL(I),I=MINL,NMIN)
PRINT 280, (I,FL(I),I=NMINT1,MAX)

GO TO 67

MIN=NR

NMIN=NC

MIN1=MIN+}

NMIN1I=NMIN+1

PRINT 250, (I,R(I),1,FLCI),I,FC(I),1=1,MIN)
PRINT 260, (I,FLCI).,I,FCCI),IsMINLI,NMIN)
PRINT 280, (I1,FL(I),I=NMINL,MAX)

GO TO 67

NMIN=NC

NMIN1=NMIN+1

PRINT 250, (1,R(I),I,FLCL),TIL,FCCI),I=1,NMIN)
PRINT 280, (1,FL(I),I=NMINS,MAX)

GO TO 67

MIN=NR

NMIN=NL

MAX=NC

MIN1=MIN+1

NMINI=NMIN+1

PRINT 250, ¢1,R(I),IL,FL(D),IL,FCC(IY,1=1,MIN)
PRINT 260, (1,FL(I),I,FCC]),]=MIN1,NMIN)
PRINT 270, (1,FC(I),I=NMIN1,MAX)

GO TO 67

MIN=NR

NMIN=NL

MIN1=MIN+1

PRINT 250, (1,R(I),1,FLCI),I,FC(I),I=1,MIN)
PRINT 260, (I,FL(IY,I,FCCI),I=MIN1I,NMIN)
GO T0 67

IF (NC~-NL) 66,90,73

MIN=N{

MAX=NC

NMIN=NR

NMINI=NMIN+1

PRINT 250,(I,R(I),I,FL(D),I,FC(I),1=41,MIN)
PRINT 270, (I1,FC(I),I=NMINL,MAX)

GO T0 &7
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66

90

67
212

£

D
I

110
180
320

33

22
43

H N

MIN=NC

NMIN=NR

MIN1=MIN+}

PRINT 250, (1,R(I),I,FLC(I),1,FCCD),I=1,MIN)
PRINT 290, (I,R(I),I.,FL{I),I=MINt,NMIN)

GO TO 67

MIN=NR

PRINT 250, (I,R(1),1,FL(I),ILFC(I),I=1,MIN)

IF (MR) 211,212,211
STOP
END

SUBROUTINE FCON (MAXNNS,NOS,KK, JMAX,NMAX,NR,LMAX, IMAX,F,PTOL,X,K,
C,XGUFS,FX, IERR)

DIMENSION IMAX(6),F(6),FORG (6),%X(6),DELX(6),K(6,4,2),C(6),SUM(6),
XORIG(6),X1(6),FX(6),DFXC6,6),PSUM(6,6),P(6,6),T(6),
PHI(6),PTOL(6),FF(6),XGUES(6),LMAX(6)

FORMAT(/716H SINGULAR MATRIX/)

FORMAT (6H GRID=,]4,3X.4KHN0S=,14)

FORMAT (//29H COMMENCING CONSTANT APPROACH//)

PRINT 320

IERR=1

DO 1 1=1,NMAX

X(1)=XGUES(I])

X1C1)=Xx(1)

IGRID=1

KSWTCH=0

LSWTCH=0

ANOS=NOS

NS=0

PRINT 180, IGRID,NOS

DO 2 1=1,NMAX

DELX(I)=0,

CALCULATE PARTIALS

DO 3 M=1,NMAX

IF(M’NR)4;4:5

C(M)=0.

NRM=NR+M

FX(M)ZCI(M)*X (NRM)+X (M)

DO 6 N=1,NMAX

DFX(M,N)Y=0.

IF(M-N)B,7,8

DFX(M,N)=1.

GO TO 6

IF(N~-(NR+M))6,9,6

DFX(M,N)=C(M)

CONTINUE
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11

13

15
14
12

28
29
40

50

51
41
10

17
16
18

20

34

99

CONTINUE

DO 10 J=1, UMAX

SuUM(JyY=0,

DO 11 N=1,NMAX
PSUM(J,N)=0.
[TUMAX=IMAX(J)

DO 12 I=1,[JMAX

T(l)=1.

LUMAX=LMAX(J)

DO 13 L=1,{ JMAX
NK=K(J,1,L)
TCI)=T(1)«FX(NK)

DO 14 N=1,NMAX

P(I,N)=0,.

DO 15 L=1,LJMAX
NK=K{(J,1,L)
PCILNI=PCI,NY+TCI)#DFXINK,N)/FX(NK)
CALCULATE TOTAL PARTIAIS
PSUM(J,N)Y=PSUM(J,N)+P(1,N)
SUM(J)=SUM(J)+T(I)
IF(KSWTCH-1)28,29,29
CALCULATE CONSTANT TERM
FORG (J)=SUM(J)
IF(LSWTCH-1)40,41,41
GRID=IGRID

IF (FORG (J)) 50,51,51

FF(J)=F(J)»*(GRID/ANOS)* (- (ABS(FORG(J))+2.#F(J))*w(1.-GRID/ANOS))

1+2.#F (J)

GO 70 41

FFOJ)I=F(J)ww (GRID/ANOS)*FORG(J)*+(1.~-GRID/ANOS)

PHI(JY=~-SUM{ W)Y «FF ()

CONTINUE

KSWTCH=0

CaLL SIMEQ (PSUM,DELX,PHI,JMAX,IE)
[E=]E+1

NS=NS+1

GO 7O (16,17),1E

PRINT 110

GO 70 23

DO 18 1=¢,NMAX

IF CABS(DELX(I))-PTOL(I)~ABS(X(1)))18,18,19

CONTINUE

DO 20 1=4,NMAX
X(I)=xCI)Y«DELX (1)

DO 34 1=1,NMAX
NRI=NR+]
FXCI)=CCI)wX(NRI)+X(])
NS=0

KSWTCH=KSWTCH+1
LSWTCH=0

IGRID=IGRID+1

IF (IGRID-NOS-1) 42,99,99
[ERR=]ERR+1

RETURN
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4?2
30
19
24
26
25
31
32
23

35
36

E

D

DU 30 1=1,NMAX
X1(1y=xeh

GO TO 22
KSWTCH=KSWTCH+1
LSWTCH=LSWTCH=+1
[F(NS-KK)24,25,25

DO 26 1=1,NMAX
X(1y=2xX(1)Y+DELXC(D)

GO TO 43

N(OS=2« (NDS+1-IGRID)
IF(NOS-MAXNOS)31,23,23
DO 32 1=1,NMAX
Xel)y=x1(

IGRID=1

GO T0 33

DU 35 N=1,NMAX
NRM=NR+N
FXI(N)=C(NY«X(NRM)+X(N)
RETURN

END

SUBROUTINE ESTIM (NMAX-JMAX:NRnNLnNORaTXnIMAX:LMAXnF’C'FXORIGI
FXLIM, UK, FX)
DIMENSION FXORIG(6),FXL.IM(B),X(6),X1(6),XP(6),C(6),FX(6),5UM(6),
F(6), IMAX(6) ,LMAX(6),JK(6:4,2),T(6),PHI(6),CHX(6),TOL(6)

110 FORMAT (/3X3HLX=,[4)

29

20
15

16

NCC=NR+NL+1

DO 29 L=NCC,NMAX
FXLIM(L)=1./FXLIMC(L)
FXORIG(L)=1./FX0ORIG(L)
JJd=1

Lx=0

IF (JJ-1) 16,15,16

DO 3 J=2,NMAX
FXCJY=EXP((ALOG(FXLIM(U)I*FXORIG(J)Y)/2.0)
DO 1 K=1,NMAX

DO 2 1=1,NOR

AP=1-1

XNOS=NOR
FX(K)=FXORIG(K)*EXP(AP«ALOG(FXLIM(K)/FXORIG(K))/(XNOS~1.))
DO 8 M=1, JMAX
SUM(M)=z=-F (M)
IMMAX=]IMAX (M)

DO 9 J=1, IMMAX

T(J)=1.

LMMAX =L MAX (M)

DO 10 N=1,LMMAX
NK=JK (M, J,N)
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11

22
12

13
28
26
18
21

23
30

14

24

25

TOIY=T(J)*#FXINK)
SUM(M)=SUMM)+T(J)
PHI(M)=-SUM(M)

APHI=0.

DO 11 N=1, UMAX
APHI=APHI+ABS(PHI(N))

IF (1-1) 22,12,22

If (APH]=~-APHI1) 12,12,13
APHI1=APH]

DO 19 N=1,NMAX
X1(N)=FX(N)

CONTINUE

GO TO 26

DO 28 N=1,NMAX
FX{N)=X1(N)
CHX(K)=ABS(ALOG(XP(K)/X1(K)))

TOL(K)=TXwALOG(FXLIM(K)/FXORIG(K))7(XNOS~1.)

IF (CHX(K)-TOL(K)) 21,21,23
LX=LX+1

IF (LX-NMAX) 30,24,24
LXx=0

PRINT 110, LX

DO 14 N=31,NMAX
XP(NY=FX(N)

CONTINUE

JJ=JdJ+1

GO TO 20

PRINT 110, LX

DO 25 1=1,NMAX
FXCI)=XP(])

RETURN

END

SUBROUTINE SIMEQ (A,»X,B,N,]ERR)

SOLUTION OF SIMULTANEOUS LINEAR EFQUATIONS
DIMENSION A(6,6),X(6),B(6),IND(6)

DO 1 I=1,N

IND(I)=]

DO 15 K=1,N

SEARCH ARRAY FOR LARGEST VALUE

IX=K

JX=K

DO 3 I=K,N
DO 3 J=K,N
IF(ABS(AC(]
Ix=1

Jx=J
CONTINUE

»J))=ABS(AUIX,JX))) 3,3,2
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14

15

16

IF (ACIX,JX)) 5,4,5
IERR=1

RETURN

IF (IXx-K) 8,8,6
EXCHANGE ROWS

DO 7 J=K,N
TEMP=AC(IX, )
ACIX, ) =2A(K, D)
A(K,J)=TEMP
TEMP=B(IX)
B(IX)=B(K)
B(K)=TEMP

IF (JX-K) 11,11,9
EXCHANGE COLUMNS
DO 10 I= 1,N
TEMP=AC(], JX)
ACT,JX)=A(],K)
A(I,K)=TEMP
INDEX=IND(JX)
INDCJX)=IND(K)

“IND(K)=INDEX

PIVOT=A(K,K)

DU 12 J=K,N
A(K,J)=A(K,J)/PIVOT
B(K)Y=B(K)/PIVOT

DO 15 1=1,N

IF (I-K) 13,15,13
TEMP=A(I,K)

DO 14 J=K,N
ACT,U)sSACT,J)Y-A(K, J)*TEMP
B(IN)=B(1)-B(K)«TEMP
CONTINUE

DO 16 I=1,N
INDEX=IND(I)
XCINDEXY=B(])
IERR=(

RETURN

END



NORTHROP SPACE LABORATORIES

A-2 TFortran IV Source Program
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DIMENSTIN IMAX{O) yF(6) o X(B) 30l K(0say i) o FXORIGIOEY s X1L(E)2DELX(H),

U FX(O) g DFX(696) s SUM(SO) 3PSUMIG L) 2TLEL) 3P B0 Al6436)3R(B),
I AJRIGLO)Y yPHI(O) yPTZLIA)YyFLIB)Y,FC(B)FXILA)yFXLIM(G),
M X5UcS(6),LMAX(6)

100 FARMAT (//74H NA=,14/)
110 FORMAT(/16H SINGULAR MATRIX/)
120 FARMAT (Z2CG14)
130 FOARMAT (2X17HINPUT DATA//21H MAXIMUM NO, 2F STEPS,3X,I4/16H NUMBER
1 OF STEPS:8X,14/720H TIMES THRZIUGH SIMEQe4XI4/715H CONSTANT TERMS/)
140 FYRMAT (/32H CIMMENCING CUEFFICIENT APPRIACH)
150 FZRAMAT (/3XSHFXLIM/{6{5XF12.2)))
180 FOARMAT (&H GiID=4314,3X34HNBS=,14)
212 FORMAT (6(646XEL548))
230 FYURMAT (BE12..)
240 FORMAT (AEL1Z.5)
250 FOARMAT ( 3X3H R{,12,2H)=3E16e8y2X4HPHMS y5X3H Ly I242H)=yE1l6.842X
FTHHINRIESySX3H C(41242H=4E16.8,4,2X6HFARADS)
260 FARMAT {38XZHL(91242H)=3F164842XTHHENRIES 96X2HC(31232H)=4EL1HBe8,42X
FOHFARADS)
ZT0 F2RMAT (73X3H C{412,2H)=4EL16.8,42XAHFARAUS)
280 FARMAT (37X3H C{43124,2H)=,E16.8,2XTHHUNRIES)
290 FARMAT (3X3H R{)I12,2H)=3E16.842X4HDHMS 5X3H L, 12:2H)=4E16.8,2XTHH
FENRIES)
220 FORMAT (2X23H {4y 12,2H)=43E1l6.8,2X4HIHMS)
310 FURMAT (3X3H R{,yI1242H)=3F16.8+2X4HIHMS 441X3H Cl4y1292H)=9E1hAeB892X6H
FFARADS)
320 FARMAT (/1GH VARIABLES/)
330 FARMAT (/772H ALL ROGBTS IN THE FOLLYWING SET LIE WYTHIN THE PHYSIC
LAL LIMITS SPECIFIZD//)
347 FZRMAT (49H USING THIS SET 4F ESTIMATES, NJ REOBTS WERE FQUND//)
250 FURMAT (/75H THE FALLIWING SET 3F RPZTS D@ NOT LIE WITHIN THE PHYS
FICAL LIMITS SPECIFIED/)
360 FORMAT (/Z273H HANGE F2IR VARIABLES/ZXEHFXIRIG/{(6{(5Xy4F1l2.2)))
370 F2RMAT (/11lH THERE ARE ,12,15H EQUATIANS AND ,12,20H UNKNBWNS,C3INS
FISTING #F 412,11t RESISTANCE(S)y +I12919H INDUCTANCF{S},AND ,12,416H
2 CAPACITANCE(S).)
380 F2RMAT (84 H TH: LOAWER BOUNDARIES F@PR THE RESISTANCES, THE INDUCTAN
FCESy AND THL CAPACITANCES ARE ,2{E16.842Hy ) /54 AN™ ,Eib.8,1H, 48H
B RESPACTIIVELY, WHILF THEIR UPPER BOUNDARIES ARE 42([F16.8492Hy )yaHA
RND F1XEiGeB,14H RESPECTIVELY.)
READ (54120) MAXNIS NDS KK JMAXZNMAXy I ZMAXyNRyNLyN", NZRy MR
MEAD (S,1270) (EMAXTJ) 3J=1,4J0MAX)
READ (54120) (LMAX(J),J=1,JdMAX)
READL (54240) (F{J)yJd=1,IMAX])
READ (5,23) (PTILIN)sN=1,NMAX)
READ (54230) XAMINGXLMINZXCMIN,XRMAX 3 XLMAX 4 XCMAX
HEAD (542301 (FX@RIGIN) ¢yN=1 ,NMAXY 3 (FXLIMIN) sy N=1,NMAX)
KEAD(S,?QQ) (C(M)9M=19NR)
HLEAL (5,220) IX
N9 53 J=1,JMAX
[IMAX=TIMmAX(J)
LiMaX=LmMax(J)
53 READ (5,120) ({K{JyI,L)yL=1,yLIMAX),I=1,JIMAX)
NNBS=N2S
WRITE (Ly130) MAXNDS,NBS,KK
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WRITE (42100 (FUJ),J=1,JIMAX)
WREITE (+,360) FXBRIG
WRITF (4,150) EXLIM
WRITE (653701 JMAX,NMAX,NRyNLyNC
WRITU (6, 380) X AMINg XLMIN, XCMINy XRMAX 3 XLMAX  XCMAX
IF (FXARIGIYI)-FXLIM{Y)) 331,332,331
331 CALL ESTIM [NMAXyJMAX,NRyNLyNBRyTX,IMAX,LMAX,F4CyFYBRIGy FXLIM,K,
T FX)
332 WRITE (/7 ,320)
WRITE (6£4,210) (FXIN),N=1,NMAX)
NA=
NG 205 M=1,NMAX
IF (M=}R) 2u064206,207
207 C(M)=0,
206 NRM=NR+M
205 X(MI=FX(M)-C(M)=F X(NRM)
WRITE (7y140)
51 WRITE (¢ ,107) NA
HA 4l 1=1,NMAX
XGUES(I I=X(1)
48 X1(I)=X(1)
IGRID=1
47 LL="
ANBS=NEAS
KSWICH="
LSWICH=
NS= .
54 WRITE (¢,180) IGRID,NIS
60 DI 5 I=1.NMAX
3 DELX(I)=C.
CALCULATE PARTIALS
D 4 M= 4NMAX
IFIM=-NR)5,5,4¢
6 CtMmy==2,
5 NRM=NR+4
FX{M)=C (M) e XN i) +X (M)
D3 7 N=1,NMAX
DFX(M,N) =0,
IFIM=N) 3,8,9
8 DEX(My)=1.
63 Te 7
9 IF(H-(NR+M) 1 T,10,7
17 DEX(MyN)=C (M)
7 CANTINUT
4 CENTIRUC
b 11 J=1, 4MAX
SUMUJI=-F(J)
LA 12 H=1lyNmax
12 PSUM(J, i)=0.
ITIMAX=T1:1AX(J)
DB L3 I=1,1JMAX
ir=z1.
LIMAX=LMAX{ D)
Db 14 L=1,LJdMaX
NKzK(JQ | 1L)
14 TUI)=TUI)*F XINKY



g 15H N=1aNMAK
P{leNY=0,
vk 16 L=lyLJMAX
lleK(JylyL)
16 PCLyN)=PLLyN)+T(I)=DFX{NKyN)/FX(NK)
CALCULATE T27TAL PARTIALS
15 PSUMJ,NI=PSUMIJWNI+P (T ,4N)
L3 SUM(J)=5uM(J)+T (1)
DETEZRMINNF LARSGEST CAEFFICIENT ©F TACH EGQUATIEN
IF(1A-1)17,17,18
17 IX=),
TIMaX=IMAX(J)
03 19 I=1y1JMAX
IF(T(I)=-TX)19419,21
20 TX=T(})
NX=1
19 CE@NTINUF
Lo 19 21
18 IF(IMAX(J)+1-NAY22,23,23
22 iX=IMAX(J)
GA T 21
23 NX=i4A-1¢
21 IFIKSWILH-1)24425,25
CALCULATE CHEFFICIENTS
24 ABRIG(J)I=({-SUM(J))I/TINX))+1.
25 IFELSWTLH~1)311,29,29
30 GRID=IGKIU
IF (ASRIGIJ)) 14125,125
1 A{JyNA)==(ABS{AZRIG(J) =24 )%#(1.-GRID/ANZS) )+2.
GB T 273
125 A(JyNAI=ABRIG(J) % {1.-GRID/ANDS)
CALCULATI TA2TAL PARTIALS (CYRRECTED)
29 DY 28 N=1,NMAX
28 PSUMUJ,NI=PSUM{J NI+ (ATINAI-L.0)#P(NX,N)
11 PHI(J)=-(SUM(J)+(A{JyNA)=1.0)=T(NX))
KSWICH=" ‘
CALL SIM*Q (PSUMDZLX,PHIJMAX,IE)
IE=I1E+1
NS=NS+1
Gl T2 (21,32),I1:
32 WRITF (25,5110)
GG Ta 3¢
A1 6# 33 I=1,HMAX
IF (ABS(DELX({I))~-PTEZL(I)*ABS{X(I1)))33,33,40
33 CaNTINUr
Dd 395 I=14NMAX
35 xtId=xt{I)+ueELX(])
NP 6l I=1gNMAX
NRI=NR+1
61 FXUI)=C{I)eX(NRI)+X(I])
G=
LSWICH=!
KSWTICH=KSWTCH+1
IGRID=IGRID+]
IFCIGRIN=NAS-1)36452,52
36 0 26 N=!¢NMAX
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26

49

37
55

44
45

38

50

211

49

103
102

105

104

107
1N6

109

1058

111

112

XL =X (M)

e TS Z4
KSWICH=XSWTLH+L
LOSWICH=LSWTUH+L

IF (NS-KK)3T7,43,43
BE 925 T=1,NMAX
XEI)=X{1)+0ELXLI)
59 12 o

- NBS=2%(ES+1-1IGRID)

IF(IZ2S-MAXNZ2S)44438,38
[[@ 45 I=1,NMAX
Xt1)=x1itn

IGRID=1

L T2 47

NZS=NNAS

WRITE (Ce340)

D4 50 I=1,0NMAX
XCI)=XGUES(I)

NA=NA+L
IFLIA-1~-1ZMAX)S51 49,49
MR=")

CALL FCUN (MAXIBSyNBS KKy JMAX yNMAX 9 NRyLMAXy IMAXyF9PTOL s X yKyCoXGUES

»FX, 1ERR)
G T& (112452)41ERR
iJ=n
g 76 I=1eNR
IF (X{I)}=XRMIN) 99,776,756
IJ=1Jd+}
CONTINUL
G2 77 I=1,NR
IF (X{1)=-Xx2MAX) 77,777,101
1J=1J+1
CONTINUL
NRP1=NR+1
NRPNL=N&x+NL
'8 102 I=NRP1,MN<xPL
[F (X{(I)=xLMI}N) 103,102,102
1J=1J4+1
CONTINU!
g 104 [=NRP1y,NRPNL
IF(X{I)-XLMAX) 104,104,105
1J=1J+1
CONTINUL
DA L0t I=NCC,ynMaX
X{I)=1./X{1)
IF (X(I)-XCMIX) 107,106,106
{3=14+1
CONTINU~-
NZ 108 I=NCC,\NMAX
IF (X{I)-XCmAX) 158,108,109
[J=14+1
CONTINUL
IF (IJ-1) 111.121,121
WRITE (¢4330)
GO 17 113
WRITE (£4340)
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121

113
81

B2

83

65

B7

88

89

14

91
97

WRITE (n,350)
od 19 67
D81 I=l,UR
PAT)=FX{])

DR A2 J=NRPL4NRPNL

[=J-}R
FLET)=FX())
NCC=NR+L+1

D3 53 M=NCC,NMAX

I=M-{NR+HMNL)

EXI(I)=1o/FX (1)

FCOI)=FXI(I)

IF (NR=HL) 91,72,65
IF (NC-4R) £5,74,384

MIN=NL
NMIN=NR
MAX=NC
MIMI=M] 4]
NMINLI=NMIN+]
WRITE (&45250)
WRITE (c¢,310)
WARITE {(64271)
L TR 67
MAX=NR

IF (NC-NL) 28,

MIN=NL
NMIi=NC
MINI=MI+1
NMINL=MNMIN+1
WRITE (64250)
WRITE (45,31C)
WRITE (+¢,3235)
GO T4 67
MIN=NC
NMIN=NL
MINi=MI"+]
NMINI=NMIN+1
WRITE (¢ 4,250)
WRITE (¢,230G)
WRITE (~430))
GE T o7
NMIN=NC
MIN=NC
NMIN]I=NMIN+]
WRITE (04,2540)
WRITE (4,450D)
68 TE 67
MIN=NL
MMIN=NC
MINI=M[ i+1
WRITE (wy230)
WRITL (6e31u)
GB 1D 67

(TyRUI) 14 FLOTI) 21 ,FCUI),1=1,MIN])
(LoR(OI) 1 ,FCLI)yI=MINL,NMIN)
(LoFCI) s I=NMIN1,MAX)

89,37

(IsROI)yIWFLUI) 2I,FCUI)I=14MIN)
(IyR(I),I'FC(I)'I=MIN1,NM1N)
{I14R{1),I=NMIN1,MAX)

(LaR({T) I FLCI)»I,FC(I)sI=1sMIN)
(LoR(I) s T4FLEI)I=MIN1,NMIN)
(1+R01),I=NMIN1,MAX)

(IoRUI)HIZFLUI)HI,FC(I)sI=1,MIN)
{I4RCI}yI=NMIN1,MAX)

(LyRIT) T4 FLIT) y14FCUI) o I=1,MIN)
(LoR{EI) oI FCCT) I=MIN1,NMIN)

IF (NL=-NC) 964+97,92

MAX =NL

IF (NR=IC) 9%,94,93
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95

94

96

97

[
73

66

90

67
212

MIN=NC

NMTIN=NR

MINI=MI i+1

NMINI=NMIN+e]

WRITE (64257 ) (L gROTYyT,FLLT) g1 4HC({I)yI=14MIN)
WRITF (4,290) (14R01) 41 ,FLETI) yI=MINI,NM[N)
WRITE (¢ 928u) (14 L{T),I=NMINL ,MAX)

B 12 7

MIN=NR

NHMIN=NC

MINL{=M] 41

NMIG1I=NMIN+1

WRITE (< 4250) (1 4ROI) $I4FLUTI)Y I FC(L)41=1,yMIN)
WRITE (£9260) (LeFLITI)yI4FC(I)yI=MIN1,NMIN)
WRITE (5,28C) (L,FL{I)yI=NMINL,MAX)

GB Te €7

NMIN=NC

NMIHL=NMIN+]

WRITL (A9250) (I4RUIYyI4FLID) I ,FC{I)yI=14NMIN)
WRITE (€,280) (14FL{TI),I=NMINi,MAX)

38 13 A1

MIN=NR

NMI=NL

MAX=NC

MINI=M]IN+]

NMIMI=NMIN+]

WRITE (454250) (I 4RUI)yIsFLITI) I FC(I),yI=14MIN)
WRITE (6£4260) (LI4FLII) I ,FC(I),I=MIN1,NMIN)
WRITE (€,277) ([,FC(I},I=NMINL,MAX)

LB T2 &7

MIN=NR

NMIN=NL

MINi=M]&+]1

WRITE (092501 (1,R(I) 41 3FLUT)T1,FCUL1),I=1,MIN)
WRITE (942600) {T4FLII) I 4FCUI)oI=MINL,NMIN)
58 13 67

[E (NC=-TL) 66,90,73

MIN=NL

mAX=NC

NMI[=NR

MMINI=NMIN+1

WRITE (59250) ULZRUIV I oFLOT)YyIZWFC(I)yI=1yMIN)
WRITE (6427w) (I,FC(I)+I=NMINL,MAX)

GA TS o7

MIN=NC

HMTI=hNR

MIN: =MIN+1

WRITE (242500 (LHaREDV 12 FLUT) 3 1,FCUTI),1=1,MIN)
WRITD (64290) (I4R{IID)yI,FL(L),,I=MINL,NMIN)

LA T8 »7

MIN=NR

WRITE (92090 (1 yRUI) 4TI 4FL(I) 2I1,4FC(T)4I=1,MIN)
IF (M) 211,212,211

STEP

END
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SUBRAUTINE SIMEUW (AyXeByN,IERK)
SALUTIZN 2F SIMULTANEAUS LINEAR CQUATIANS
DIMUNSTON A((:,,b)y‘((ﬁ),H(b)yIND(b)
GA L I=14N

INpel)=1o

DA 195 K=14N

SEFAXCH ARRAY F@R LARGFEST VALUE
I1X=K

JX=K

DA 3 I=keN

45 J=K N
IF{ABSIA(T 2 J)}=ABS{A(IX,JX))) 343,42
IX=1

dx=J
CONTINUL

IF (ALIXsJX)) 544,5
IZRR=1

RETURN

IF (IX-=R) BByt

e XCHANGE RIWS

b 7T J=K4N

TEMP=A(iIX.Jd)
AlIXysJ)=zA(KeJ)
A(K,d)=TEMP

T MP=H(1IX)

blIX)=b(K)

BIK)=TEMD

IF (JUX-K) 11,11,9
EXCHANGE COLUMNS

DA LD 1= 1eid
TEMP=A(1,JX)
A{T,JX)=A(],K)
A{l,K)=TtMP

INDEX=TID(JX)
INDOJIX ) =IND(K)
IND(K)=[NDEX
PIVET=ATKyK)

D12 J=KeN
AlKyJ)=A(KyJ)/PIVET
BIKY=B(K)/PIVAT

PO 15 I=IN

IF (I-K) 13415413
TEMP=A([4K])

DI 14 J=Ke N
A{I4Jd¥=Al1,0)=-A{K,J)*TEMP
BLI)=B(1)-B(K)=TEMP
CANTINY:

i 16 I=i4.4

INDEX=1 (1)
X{INDEX)=R(1)

[tR2=0

Rt TURN

vt ND
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SURRBUTINE FCul (MAXNGS yNBS 3 KKy JMAX g NMAX g NRy LMAK ) IMAX 3 F o PTEL 9 X 9K o

t CyXGUES yFX,y IERR)

DIMENSTILHN IMAXLIG) 2FU6)4FORG (6)4X16) 9 DELXIE) yK{t9442)4CLE)ySUM(G),
0 XAAL5(6) 9 X1 (6) 4FX(6) yDFX(616) 4 PSUMIE,0) 3P(646)4T(6),
I PHILGA) yPTOLLG) yFFL6) y XGUESI6) ,LMAX (&)

FERMATE/16H SIENGULAR MATRIX/Z)
FPARMAT (2H GrID=,1443X4HNBS=,14)
FARMAT (/724 COMMENCING CONSTANT APPRZACH//)
IERZ=1
U3 1 =14 NMAL
X{I)=XGULS(T)
XL(IY=x(1)
IGRID=1
KSWICH=u
LSWICH=".
ANZS=NHZS
Hg=
WRITE (Cqa150) IGRIDLNBS
L3 2 T=1,NMAX
DELX(I)=%,
CALCULATFE PARTIALS
W3 5 M=7 G NMAK
ITF{M=-NR )4, 4,5
C{Mm) =1,
NRM=HR+}
FX{M)=C (M) X (NRM)+X (M)
DI 5 N= ¢yNMAX
PEX(Myti)=rg
[F‘M-‘.J)d'7'c
rFX(MQN):lo
LB T8 4
TF(HN=-(NK+M) ) E4F,6
BDEXIM, %y =C{M)
CUNTIHU
CAONT INY:
DA X0 g=T7, JMAaX
SUM(J)= .,
U8 11 N=1,4MAX
PSUM S, i)=0,
IUMAX=T1%AX(J)
UZ 12 I=1,1J4MAX
ftry=z2.
LIMAX=LMAXT D)
G913 L=1,LJMAX
MK=K{Jy1,L)
TOIY=TOL)=F X (NK)
B2 14 N=1MUMAX
PlILysN)=
DB 5% L=1,LJMAX
NKzK(JylyL)
POLaNY=P LT NI +TLL ) #DFX(INK,N) /FX(NK)
CALCULATE Ta2TAlL PARTIALS
PSUMUJ N ) =DSUMIJWN)+P (T 4N)
SUMEJ) =sUMJ)+T(T)
6l



IF(KSHWTCH-1)2t+429,29
C- CALCULAILE CUNSTANT TERM
28 FURG (J)=SumM(y)
29 THFLLSWTLH-1)40G441,441
40 LRIV=IGID
IF (FARG (J)) 575,51,51
SO FFIJ)I=F(J)#a {GRID/ANBS) % (—{ABS(F2RG(J))I+2.#F(J) ) ##(Ll.~-GRID/ANZS) )
51 FFUJ)I=F(J)e=(SRID/ANDS)*FARG{J) %2 {1 .~-GRID/ANBS)
142.#F{J)
Gg T8 &4
41 PHI(J)==SUM(JI+FF(J)
10 CANTINUL
KSWTICH=".
; CALL SIMFQ (PSUM,DELX,PHI,,JIJMAX,I1E)
IE=1E+1
NS=NS+1
GB T3 (16917),1C
[ 17 WRITE (5,119)
l. 3 T3 23

16 D2 18 I=1,NMAX
| IF(ABSIDELXAI))-PTAL(I)=ABS(X(I)))18,18,19
‘ 18 CONTINU-
I 38 20 [=1,4mMAX
20 X(I)=X{I)+DELX(I)
DR 44 I=i,4MAX
h NRT=NR+1
34 FXCI)=CI)eX(HRID+X(I)
NMS=D
KSWTCH=KSWTCH+1
I LSWICH=%
» IGRID=1GRID+1
‘ IF (IGRID=-NYS-1) 42,99,99
l 99 JERRA=[LRK+1
RETURN
42 NG v [=1,NMAX
30 X1(I)=X(1)
| 68 1¢ 2:
19 KSWTCH=KSWICH+1
LSWTCH=LSWTCH+1
' IF(iS=-KK)24425,75
24 10 26 I=1,NMAK
26 X{I)=X(I)+0ELX(D)
GO T8 4.
25 NBS=2# (5+1-16R1ID)
IF(BS-MAXNPS)3L,23,23
31 D@ 32 I[=1l,e4MAX
32 X(I)=x1(1)
IGRID=1
LA T 3
23 8 {5 N=LyNMAKL
NRM=NR+ |
35 EX(N)=C(N)#X(NRM)+X(N)
36 RTTURN

END
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i5
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11
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L2

13
<8
26
18

21

23
30
17
14

SUBRBUTINE {STIM (NMAX,JMAX NRyNLyNOR TXy IMAXyLMAXF4+CyFXBRIG,
F FXLIMyJK,FX)

DIMINSIZN FXERIGUO) fFXLIM{G) g X(6) o X1U6) 4 XP(H)4C{6)FX(6),SUM(6),
)] FUB) s IMAX(6) s LMAX(6) 4 JK({644,2)3T(6)PHI(R)CHX{E)TAL(6)

FIRMAT (/3X:iHLX=,14)

NCC=NR+~L+1

D2 9 L=NCL,MAX

EXLIM(L)=1./7 XLEM(L)

FXARIG(L)=1 /EXARIG(L)

JJd=:

LX=3

IF (JJ-i) 14,15,16

0 2 J=coNMAX

FX{J)=CXPULALSGURFXLIMIJ)Y#FXBRIG(I)) I/ 2a0)
i L K=14NMAXK

e 2 I=1,M2R

AP=[-1

YNBSS =NAR

FX(K)=FXERIG(K)#EXP(APRALBGIFXLIMIK)/FXURIGIK) )/ IXNAS=-1.))

L0 B M=i,JMAX

SUM{(M)==F (M)

IMMAX=TMAX(M)

DY 3 Jd=1i,IMMAX

TtJ)=1.

LMMAX=LMAX (M)

DG 10 N=1,LMMAX

NK=JK(M,J,7)

TCII=T(I)eF XINK)

SUM(M)=5UM(M)+T(J)

PHI(M)==SuMm(~)

APHI =D,

U 11 N=ig9JMAX

APHI=APUI+ABS(PHI( 1))

IF (I-1) 22412420

IF (APHI-APHIT) 12,12,4,13

APHI1=APH]

DO 19 =1 4NMAK

XL =F Xx(N)

CaNTINU

GA 1 2.

Ny B =i, MAX

FX{N)=X1(N)

IF (JJ-1) 1417418

CHX(K)=aBS{ALIGIXPIK) /X1(K)}))

TILIK)Y=TX#ALOG(FXLIM(K) /FXZRIGIKY )}/ (XNBS~-1.)

IF (CHX(IK)=TIZL(K)) 214,21+23

LX=UX+1

IF (LX=-NMAX) :i7,24,24

LX=

WRITE (01172 LX

V8 L4 N=gpyiMAK

XP{N)=FX(N)

CaANT I

Jd=JJ+1

58 19 2
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24

WRITE (Gae110) LX
3 25 I=i4NVMAX
FXCEY=XiP (1)
RETURN

EWND
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APPENDIX B

Subroutines

In the main program the following subroutines are used:

ESTIM

SIMEQ
FCON

The remainder of this appendix is devoted to descriptions of these subroutines.

B-1 ESTIM (Selection of Initial Estimates)

This subroutine is a technique for obtaining a set of estimates for the
variables.. The range of interest and the number of increments to be taken for
each variable are in the list of arguments of the subroutine ESTIM. (N-1) of
the variables are heid at a logarithmic mean of the given range, while the Nth
variable is varied according to the number of increments. This process is
repeated for each variable, with each of the previous variables maintaining

their generated value rather than their mean value, as described in Section 2.4.

The N variables are subjected to this process repeatedly until each lies
within a desired tolerance of the preceeding corresponding variable. When all
N variables satisfy this requirement, they are returned as the desired set of

estimates.

Calling Sequence

CALL ESTIM (NMAX, JMAX, NR, NL, N@R, TX, IMAX, IMAX, F, C,FX@RIG,FXLIM, JK,¥X)
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where
NMAX
JMAX
NR
NL
N@R
TX

IMAX

FXORIG
FXLIM

JK

FX

SPACE LABORATORIES

- the number of variables

- the number of equations in the system

- the number of resistances

- the number of inductances

- the number of increments to be taken within the specified range

- the tolerance used to determine the acceptability of each variable
- maximum number of terms per equation

- maximum number of factors per term

- the constant values of each equation

- the linear relationship between the inductances and their
corresponding resistances

- the lower boundary of the range for the variables
- the upper boundary of the range for the variables

- the subscripted subscripts of each variable; these describe the
equations within the system

- the outlet for the generated estimates.

B~-2 SIMEQ (Simultaneous Equation Solver)

This routine employs a Gaussian technique of reducing a coefficient matrix

by the pivotal method. The elements themselves are partial differentials

resulting from the main program. The largest numerical element is sought and

used as the pivoting element. Should this largest element be trivial, an error

message is returned, printed out, and the program proceeds as indicated in

Figure 3-1,
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Calling Sequence

CALL SIMEQ (A, X, B, N, IERR)

where
A - the N x N array in which the elements of the matrix are stored
X - the resulting column matrix
B - the (N+1) column array
N - the number of equations to be solved

IERR - the control indicating singular matrix if IERR=1.

B-3 FCON (Constant Approach)

Like the main program this approach toward solving the system of nonlinear
equations employs the Newton-Raphson and Freudenstein-Roth methods. The
difference lies in the fact that the constant terms are incremented (or decre-
mented) rather than the leading coefficient of each equation. This method may
be used whether or not the coefficient approach fails. The original set of

estimates obtained from ESTIM is used, and all the input data are recalled.

Calling Sequence

CALL FC@N (MAXN@S, N@S, KK, JMAX, NMAX, NR, IMAX, IMAX, F, PTQL, X, K, C, XGUES,

FX, IERR)

where
MAXN@S - maximum number of incrementing (or decrementing) steps to be taken

N@S - the initial number of steps to be taken
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JMAX
NMAX
NR

IMAX

IMAX

PT@L

XGUES
FX

IERR

SPACE LABORATORIES

- maximum number of times allowed for subroutine SIMEQ to be called
- number of equations

- number of variables

- number of resistances

- maximum number of factors per term

= maximum number of terms per equation

- constant terms of each equation

- percentage of tolerance allowed on each change of each variable

= the variables

- subscripted subscripts of each variable which describes the system
of equations

- linear relationship between inductances and their corresponding
resistances

- original zet of estimates
- outlet for roots, or last set of variables

- contral for determining if roots are found

68



W W IS M N N W mm e e e

NORTHROP SspACE LABORATORIES

APPENDIX C

Description of Computer Inputs & Outputs

C-1 Input Nomenclature

All inputs are made through the familiar FORTRAN commands. The inputs for

the various subroutines are read into the main program. The following is an

alphabetic listing and a description of each input item used. The symbol in

brackets following each description refers to the nomenclature used in Section 2.0.

c(M)

F(J)

FXLIM(N)

FXPRIG(N)

IMAX(J)

IZMAX

JMAX

K(J,I,L)

Constant for establishing linear relationship between resistances

and inductances, (1 £ M X NR). x_]
The constant terms of each equation, (1 £ J S JMAX). [Fj]

Upper limit on range of variables used to obtain estimates,
(1 £ N < NMAX). [Yn(up)]

lower limit on range of variables used to obtain estimates,
(1 £ N < NMAX), [Yn(low)]

Number of terms in each equation, (1 &£ J < JMAX). [Qj]

Number of column arrangements to be used in the coefficient approach.
[Qlimit]

Number of equations to be solved. [p]

Subscript for each factor [1 £ L < IMAX(J)] of each term

[1 £ 1 £ IMAX(J)] of each equation (1 £J % JMAX). [x(j,i,k)]
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’ IMAX(J)

MAXN@S

5

NC

NL

NMAX

NOR

NOS

NR

PTPL(N)

NORTHROP SPACE LABORATORIES

Maximum number of times subroutine SIMEQ may be called for each

]

attempt at convergence. [Ulimit
Number of factors per term per equation, (1 £ J X JMAX). [dj]

The maximum number of increments allowed in the Freudenstein-Roth

Technique. [Vlimit]

Input option relating to search for satisfactory roots. If MR=0,
the computer will stop after one set of satisfactory roots have
been obtained. If MR=1, the computer will continue searching for

roots until IZMAX is reached.

Number of variables representing capacitances. [w]
Number of variables representing inductances. [v]
Number of variables involved. [p]

Number of increments to be taken from FXORIG(N) to FXLIM(N)

in selection of initial estimate. [W]

Number of increments to be used in varying the coefficients or

constants for each equation in the Freudenstein-Roth technique. [v]
Number of variables representing resistances. [u]

Maximum percentage of change in variables for establishing

convergence in Newton-Raphson method (1 & N £ NMAX).
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TX

XCMAX

XCMIN

XIMAX

XIMIN

XRMAX

XRMIN

Constant for determining convergence in selection of initial

estimate of each variable. [Aa]

Maximum

Minimum

Maximum

Minimum

Maximum

Minimum

C-2 Input Format

value

value

value

value

value

value

The correct format for

variables representing capacitances can attain

variables representing capacitances can attain

variables representing inductances can attain

the variables representing inductances can attain

variables representing resistances can attain

the variables representing resistances can attain

the inputs already described is provided on the

Fortran key punch forms which follow. Representative values of the inputs

involved are listed immediately below the Fortran symbol.

to the set of six equations and six unknowns presented in Appendix D.

71
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C-3 Output Nomenclature

The first data printed out are certain original input data. The "Maximum
No. of Steps" referred to is MAXNOS; the "Number of Steps" is NOS; and the "Times
Through SIMEQ" is KK. The "Constant Terms" are F(J) arranged in order of
subscripts reading from left to right. Following these terms the range of
interest for each variable is established by means of FXORIG(J) and FXLIM(J)
which are arranged in the same manner as F(J). The rest of the printout of
input data describes the number of equations and unknowns, the number of
resistances, inductances, and capacitances involved, and the minimum and maximum

values of such components.

After the printout of input data, the printout is designed to indicate to
the computer operator the steps taken by the computer in obtaining a solution.
The terminology used is the same as that already provided in the description of

input nomenclature with the following additioms:

GRID The iterative step number in the Freudenstein-Roth technique

(1 S GRID = NOS)

X The counter used in the process of selecting initial estimates.

When LX = NMAX the selection process is complete.

NA The counter used in the coefficient approach to indicate the
arrangement of terms in the set of equations. When NA=l, the
largest term in each equation is used as the first term. When

NA=2, the original order of terms as input is used. When NA=3,
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the original first term in each equation is exchanged with the
second term. When NA=4, the original first term is exchanged

with the third term, etc.

The final output depends upon conditions arising within the program. Should
a satisfactory set of roots (a set in which all elements lie within the physical
limits specified) be obtained, a statement indicating this fact is printed out
together with the roots appropriately denoted as resistances, capacitances or
inductances. In the case in which roots are found but are not acceptable, a
statement indicates this fact followed by a listing of the values of the
unsatisfactory roots. If no satisfactory roots are found by the time all IZMAX
columns have been tried, a statement is printed to this effect. As already noted
the program contains an option that, in case a set of roots are found, the process
either stops or continues searching using the remaining of the 1ZMAX colummns. If
a singular matrix is encountered in the SIMEQ subroutine, the words "SINGULAR
MATRIX" are printed out, and the computer proceeds as it would if no roots had

been found, as indicated in Figure 3-1.

C-4 Sample OQutput

The output which follows is based on the input data previously presented

in this appendix for six equations and six unknowns.
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INPUT DATA

MAXIMUM NO. OF STEPS 100

NUMBER OF STEPS 25
TIMES THROUGH SIMEQ 20
CONSTANT TERMS
8.00000000E 02 1.64000000F 05 8.40000000E 06
RANGE FOR VARIABLES
FXORIG
1.00000000E 02 1.00000000F 02 1.00000000E 02
FXLIM
1.00000000E 05 1.00000000F 05 1.00000000E 05

THERE ARE 6 EQUATIONS AND 6 UNKNOWNS,CONSISTING OF 3 RESIST

THE LOWER BOUNDARIES FOR THE RESISTANCES, THE INDUCTANCES, AND

AND 1.00000000E-11, RESPECTIVELY, WHILE THEIR UPPER BOUNDAR!
1.50000000E-01 RESPECTIVELY.

LX= 1
Lx= 2
LX= 3
LX=z 4
LX= 5
LX= 6
VARIAB{ES
1.00000000E 02 1.00000000F 02 1.00000000F 04



PECIFIED

'NRIES
INRIES

C«

1)

7.93524923E-05 FARADS

/e

78



NA=
GRID= 1
GRID= 2
GRID= 3
GRID= 4
GRID= 5
GRID= 6
GRID= 7
GRID= 8
GRID= 9
GRID= 10
GRID= 11
GRID= 12
GRID= 13
GRID= 14
GRID= 15
GRID= 16
GRID= 17
GRID= 18
GRID= 19
GRID= 20
GRID= 21
GRID= 22
GRID= 23
GRID= 24
GRID= 25
ALL ROOTS
R({ 1)=
R( 2)=
R( 3)=

NOS=
NOS:=
NOS=
NDS=

NOS=z

NOS=
NOS=
NOS=
NOS=
NOS=
NOS=
NOS=
NOS=
NOS=
NOS=
NOS=
NOS=
NOS=
NOS=
NOS=
NOS=
NOS=
NOS=
NOS=
NOS=

IN THE

25
25
25
25
25
25
25
25
25
25
25
25
25
25
25
25
25
25
25
25
25
25
25
25
25

FOLLOWING

2.53561570E 03
2.13625371E 03
5.61731033E 02

SET LIE WITHIN THE PHYSICAL LIMITS

OHMS L( 1)= 2.80865516F 01 MW
OHMS L( 2)= 2.,84833827¢ 01 H
DHMS



LIMITS SPECIFIED

E 01 MENRIES
E 01 HENRIES

Ct

1)=

7.93518322E-05

FARADS

YN
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COMMENCING COEFFICIENT APPROACH

NA=
GRID= 1
GRID= 2
GRID= 3
GRID= 4
GR1D= 5
GRID= 6
GRID= 7
GRID= 8
GRID= 9
GRID= 10
GRID= 11
GRID= 12
GRID= 13
GRID= 14
GRID= 15
GRID= 16
GRID= 17
GRID= 18
GRID= 19
GRID= 20
GRID= 21
GRID= 22
GRID= 23
GRID= 24
GRID= 25
ALL ROQOTS
R( 1)s
R( 2)=
R( 3)=

NOS=
NOS=
NOS=
NOS=
NOS=
NOS=
NOS=
NOS=
NOS=
NOS=
NOS=

- NOS=

NOS=
NOS=
NOS=
..NDOS=
NOS=

- NOS=

NOS=
NOS=
NOS=
NOS=
NOSE=
NOS=
NOS=

IN THE

25
25
25
25
25
25
25
25
25
25
25
25
25
25
25
25
25
25
25

25

25

25

25

25

25

FOLLOWING

2.53563727E 03
2.13621918E 03
5.861737470E 02

SET LIE WITHIN THE PHYSICAL

OHMS LC 1)= 2.,80868771
OHMS L( 2)= 2,8482922¢
OHMS



3.40000000E 07

1,00000000EFE 01

1.00000000F 04

NCE(S),

2 INDUCTANCE(S).AND

THE CAPACITANCES ARE

'S ARE

1,.00000000F 01

2.20000000E 07,

1.60000000E 04

1.00000000E 01

1.00000000E 04

2,40000000E-01,
3.50000000E 02,

1.00000000E 01

1.20000000E 06

1.00000000E-02

1.00000000E-05

1 CAPACITANCE(S).

5.00000000E-05,
AND

1.00000000E 03
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NA=

GRID=
GRID=
GRID=
GRID=
USING

NA=

GRID=
GRID=
GRID=
GRID=
GRID=
US ING

NA=

GRID=
GRID=
USING

3
1 NOS= 25
2 NOS= 25
1 NOS= 48
1 NOS= 96

THIS SET OF ESTIMATES, NO ROOTS WERE FOUND

4
1 NOS=z 25
2 NOS= 25
1 NOS= 48
2 NOS= 48
1 NOS= 94

TWIS SET OF ESTIMATES, NO RGOTS WERE FOUND

1 NOS= 25
1 NOS= 50
THIS SET OF ESTIMATES, NO ROUOTS WERE FOUND

COMMENCING CONSTANT APPROACH

GR1IDs=
GRID=

1 NOS= 25
1 NOS= 50

USING THIS SET OF ESTIMATES, NO ROOTS WERE FOUND



APPENDIX D

FILTER CIRCUIT WITH SIX UNKNOWNS

D-1 Circuit Diagram

3
D-2 1Identity of Unknowns
Y1=Rl Y4=L1 3{6*1/C1
Y, = Ry Ys = Ly
Y3 = R3
D-3 Set of Equations
Y, Y., = 8.0 102 1)
45 . X (D"
_ 5
Y2Y4 + Y3Y4 + YIYS + Y3Y5 = 1l.64 x 10 (b-2)
Y.Y, 4+ Y. Y, + Y Y, +YY =8.4x106 (D-3)

56 172 1°3 273
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Y3¥e T Y)Y, = 3.4 x 10

=<
<
I

3'5 = 1.6x10
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APPENDIX E

FILTER CIRCUIT WITH THIRTEEN UNKNOWNS

’E-l Circuit Diagram

Rs

E-2 1Identity of Unknowns

Y1 =Ry Yo = Ly Y10 = 1/¢4

Y, =R Y, = L Y1 = e,

Y3 =Ry Yg = Ly Yip = 1/C

Y, =R, Yy =L, Y13 = 1/,

Y5 = Rg
E-3 Set of Equations

5
. - E-
VY, Yy + Y6Y8Y9 + Y7Y8Y9 2.22 x 10 (E-1)
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Y4Y6Y7 -+ Y4Y6Y8 1 Y4Y7Y8 1 Y5Y6Y7 4 Y5Y6Y8 + Y5Y7Y8 +

Y f ! _ } 4
Y2 ()Y(’ Y'SY()Y‘) ! YSY()Y() Y]Y/Yq ! Y,}Y_]Y() Y5Y7\‘) |

7 :
{ - LI 0 ( D
YiYYy t Y, YeYy 1,965 x 10 (£-2)

! Y Y ¥, 5 0 Ye¥g¥yg F Y Yg¥ g 4 Y XgY)y + Yp¥g¥yp 4

: + ,
X XY p t Yg¥o¥yy F Y ¥gY g + Yg¥g¥yg + Yp¥,Ye F

Y2Y5Y6 + Y2Y4Y8 + Y2Y5Y8 4 Y3Y4Y6 + Y3Y5Y6 +

Y4Y5Y6 + Y3Y4Y7 + Y3Y5Y7 4 Y4Y5Y7 + Y1Y4Y7 +

Y1Y5Y7 + Y1Y4Y8 -+ YIYSYB + Y1Y2Y9 + Y1Y3Y9 +

, _ ~ 9
Y YY o+ Y Yoy Y VoY 5.5399 x 10 (E-3)

I P ¢ 4+ vy v..  + Y)Y, -+
Yo¥e Y13 7 Y3¥g ¥ s¥6 Y13 T V1Y Yi3

! Ya¥, Yyg f Yg¥y Yy b Y¥y¥g Yig T YoV Vi3 7

Y Yo Yot Yg¥e Yo f VY, Yip T YY, Yip ¥

Y Yy Yy, Y,V Yyp Y Yy oYY Yy

Y, Yg Yyt Yg¥g Yy F Y Yg Ypp F Yp¥g Yy F

YoV Yyy F Y)Yy Vg FYeYy Vgt YYg Yig T

YoYg Yyt Yp¥g Yo T Y5Yg Yy F Ys¥g Vg T

i Y1Y2Y4 + Y1Y3Y4 + Y2Y3Y4 + YIYZYS +

B 11
Y1Y3Y5 + Y2Y3Y5 = 1.77245 x 10 (E~-4)
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Y + Y, Y., ¥ Y, Y. oY Y

6 Y1213 T Y7 Y2 13t Yo Yir¥is VY7 Yio¥is T

Y + Y, Y. ,Y +Y,Y, Y + Y Y, Y +

8 Y10Y13 T Yg Y11V Y V1Yo Vi3t Y1Y3 Y3

YIYS Y13 + YlY4 Y11 + YlY5 Yll + Y1Y4 Y12 4

4+ Y, Y, Y + Y, Y Y +

YiYg Yyo * ¥p¥g Yyg F Yo¥o Yiq 4 XY, Yip

Y2Y5 Y10 + Y2Y4 le + Y2Y5 le +'Y3Y4 Y10 +

12

I

Y3Y5 Y10 +~Y3Y4 Yll +Y3Y5 Y11 =1.81860 x 10

Y Y Y, .Y +Y

1 Y12%13 Yy YoaYag Yo Yoo¥s Y

Y +

2 Yi0¥13

¥ Y3 F Y3 Yio¥is T Yy Yo P Y, YioYio

3
Yo Yi0¥11 7 Vs YioYas P Ys YiaYas T Ys Y Y

Y Y. Y Yo 4 Y 12

5 Yy0Y13 ¢ Y5 Yio¥yp * Y5 Yyo¥yp T 7-225x 10

‘ ‘ _ 12
YiiYi2¥is 7 Yie¥12%1s T Yio¥iiYi3 T 90 x 10

_ 5
Y5Y7Y9 =9.0 x 10

Sy = 8
VoY Yo 4+ Y, ¥Y, = 1.50 x 10

, _ 9
Y5Y9 Yl1 + Y5Y7 Y13 +'Y2&4Y5 =6.78 x 10

_ 10
YZYS Y13 + Y4Y5 Yll = 5.80 x 10

Y = 1.20 x 1011

5 Y11V13

_ 2
Y5 = 5.0 x 10
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